WEKO3
アイテム
削装蹄の馬の前肢運動におよぼす影響に関する実験運動学的研究
https://az.repo.nii.ac.jp/records/3182
https://az.repo.nii.ac.jp/records/31822d4b1b2b-8847-4d2b-bd53-66b8a2ad4f5a
名前 / ファイル | ライセンス | アクション |
---|---|---|
diss_dv_otsu0175 (16.2 MB)
|
|
|
diss_dv_otsu0175_jab&rev (749.0 kB)
|
|
|
diss_dv_otsu0175_jab.pdf (422.5 kB)
|
|
Item type | 学位論文 / Thesis or Dissertation(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2013-01-29 | |||||
タイトル | ||||||
タイトル | 削装蹄の馬の前肢運動におよぼす影響に関する実験運動学的研究 | |||||
タイトル | ||||||
タイトル | Experimental study on the effects of horseshoeing on the movements of the horse's forefeet | |||||
言語 | en | |||||
言語 | ||||||
言語 | jpn | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_46ec | |||||
資源タイプ | thesis | |||||
著者 |
中馬, 昌平
× 中馬, 昌平 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | 現在,我が国における馬の削装蹄の基本的な原則は,「趾軸」説と「蹄の坐り」説との両者に基礎を置いている。その目的は,肢蹄の保護,運動能力の向上,各種運動器疾患の治療などである。また,削装蹄実施上の留意事項としては,蹄機作用を保護するために,蹄鉄への剰縁,剰尾の設置や蹄釘の設置部位の制限が行なわれ,また,筋や腱を保護するために,蹄鉄への上彎の設置が行なわれている。しかし,これらの諸説は,いづれもその大部分を経験上から説明しており,その実証は,ほとんど行われていない。 そこで,装蹄が馬の前肢の運動と前蹄の蹄壁におよぼす影響について実験的に検討した。 実験には,正常な歩行を有する乗用馬2頭を用いた。実験馬の前蹄には,跣蹄,4本の蹄釘を内外蹄側壁に用いて装着した平坦な通常蹄鉄,8本の蹄釘を内外の蹄側から蹄踵壁に用いて装着した平坦な通常蹄鉄,4本の蹄釘を内外蹄側壁に用いて装着した上彎を有する通常蹄鉄,削蹄,以上の5つの条件を負荷した。実験馬にはこれらの条件下で,平坦,硬固なアスファルト路面上の,騎乗による常歩,速歩,駈歩を負荷した。歩行中の実験馬の左前肢について,16mm cine filmの撮影,ひずみ計による蹄壁のひずみ測定,試作変位計による蹄踵部の側方変位の測定を行った。動作分析のための前肢の測定点は,肩甲骨棘突起の上1/3の部位,肩関節,肘関節,球節,側望繋軸と蹄冠との交点,である。また,蹄壁のひずみの測定部位は,蹄劣壁,内外蹄側壁,内外蹄踵壁それぞれの上部と下部である。その測定方向は,角細管に一致する方向(便宜上Vertical方向)と,これに直交する方向(便宜上Horizontal方向)との二方向である。炭素粉抹を利用した試作変位計は,金属螺子により内外蹄踵間に装着した。 検討の結果,次の成績が得られた。 I 装蹄の前肢運動におよぼす影響 (1)平坦な通常蹄鉄による影響 跣蹄時に比較して,次のような相異が明らかにされた。 手根関節の離地期未期における上下方向への加速度変動範囲が,駈歩の手前肢と反手前肢で増大した。その差は,Case 1では,手前肢で2900cm/sec^2反手前肢で1650cm/sec^2であり,Case 2では,手前肢で3500cm/sec^2,反手前肢で2050cm/sec^2であった。 球節の離地期における屈曲が増大した。その差は,Case 1では,常歩で7°,速歩で4°,駈歩の手前肢で12°,反手前肢で2°であり,Case 2では,常歩で8°,速歩で4°,駈歩の手前肢で11°,反手前肢でであった。 肢蹄下方の関節,殊に球節の離地期未期における腹屈方向の角加速度が,駈歩の手前肢,反手前肢で増加した。その差は,Case 1では,手前肢で5000°/sec^2,反手前肢で2000°/sec^2であり,Case 2では,手前肢で,1000°/sec^2,反手前肢で6000°/sec^2であった。 蹄の着地時における滑走が,常歩を除く他の解法で出現した。(Fig. 121) (2)蹄釘の蹄踵部への設置による影響 蹄釘を,蹄側部へ設置した場合と比較して,次のような相異が明らかにされた。 蹄冠の離地歩における前方への加速度が,速歩ならびに駈歩の反手前肢で減少した。その差は,Case 1では,速歩で200cm/sec^2,駈歩の反手前肢で1100cm/sec^2であり,Case 2では,速歩で1100cm/sec^2,駈歩の反手前肢で900cm/sec^2であった。 蹄冠の離地期未期における後方への加速度が速度ならびに駈歩の反手前肢で増加した。その差は,Case 1では,速歩で1000cm/sec^2,駈歩の反手前肢で400cm/sec^2であり,Case 2では,速歩で500cm/sec^2,駈歩の反手前肢で2400cm/sec^2であった。 球節の離地期初期における背屈方向への角加速度が,常歩を除く他の歩法で増加した。その差は,Case 1では,速歩で4500°/sec^2,駈歩の手前肢で5000°/sec^2,反手前肢で12500°/sec^2であり,Case 2では,速歩で7500°/sec,駈歩の手前肢で7000°/sec^2,反手前肢で3500°/sec^2であった。 (3)上彎による影響 平坦な蹄鉄に比べて,次のような相異が明らかにされた。 蹄冠の離地初期における前方への加速度が,速歩ならびに駈歩の反手前肢で増加した。その差は,Case 1では,速歩で900cm/sec^2,駈歩の反手前肢で1000cm/sec^2であり,Case 2では,速歩で2300cm/sec^2,駈歩の反手前蹄で800cm°/sec^2であった。 球節の離地期未期の腹屈方向への角加速度が,駈歩の手前蹄ならびに反手前蹄で増加した。その差は,Case 1では,手前蹄で6000°/sec^2,反手前蹄で9750°/sec^2であり,Case 2では,手前蹄で6000°/sec^2,反手前馬で3000°/sec^2であった。 II 削装蹄の前蹄壁におよぼす影響 (1)平坦な通常蹄鉄による影響跣 蹄時に(Fig. 209)比較して次のような相異が明らかにされた。 蹄尖壁を除く蹄壁各部,殊に外蹄側壁,内蹄踵壁で,Vertical方向のひずみ波形が相異する傾向が認められた(Fig. 225)。また,その特徴的な現象として,波形の位相が相異する傾向を認めた。内外蹄側壁のHorizontal方向ならびに蹄尖壁のVertical方向のひずみ量について検討した結果,Table 2,Table 3,Table 5に示す通りそれらいづれも,概ね,減少する傾向が認められた。 (2)蹄釘の蹄踵部への設置による影響 蹄釘を蹄側部へ設置した場合(Fig. 225)と比較して次のような相異が明らかにされた。 蹄壁各部のひずみについて検討した結果,蹄壁全体に亘り,ひずみ波形の相異が認められた。また,その特徴的現象として,蹄尖壁のVertical方向,ならびに内外蹄側壁のHorizontal方向のひずみ波形では,離地時における一過性のひずみが著しく減少,もしくは消失した(Fig. 217)。内外蹄側壁のHorizontal方向のひずみ量について検討した結果,Table 2,Table 3に示す通り,それらいづれも,概ぬ,減少する傾向が認められた。 内外の蹄踵部の側方変位について検討した結果,4本の蹄釘を内外の蹄側壁に用いた装鉄蹄では,蹄踵部は,着地期初期から中期にかけて開張し,測地時には狭窄することが示された。この蹄踵部の着地後の開張は,蹄踵部への蹄釘の設置により,常歩,速歩では早期に,かつ急激に発現することが示された(Fig. 245,Fig. 246)。また,その変位量は,Table 4に示す通りいづれの歩法においても,概ね,減少する傾向が認められた。 (3)上彎による影響 平坦な蹄鉄(Fig. 225)に比較して,次のような相異が明らかにされた。 蹄壁全体に亘り,ひずみ波形の相異が認められた。また,その特徴的現象として,蹄尖壁のVertical方向,ならびに内外蹄側壁のHorizontal方向のひずみ波形では,離地時における一過性のひずみが,著しく減少,もしくは消失した(Fig. 233)。さらに,外蹄側壁のVertical方向のひずみ波形では,波形の位相が相異する傾向を認めた。蹄尖壁のVertical方向のひずみ量について検討した結果,Table 5に示す通り概ね,減少する傾向が認められた。 (4)削蹄による影響 削蹄の前後で蹄壁の長さが異なることから,削蹄後のひずみ測定部位として,削蹄前の測定部位と相対的な位置関係を有する部位,ならびに削蹄前の測定部位と同一部位とを決定した。これら各々について検討した結果,削蹄後の二通りの部位におけるひずみ波形は,互いにほぼ類似した。しかし,削蹄前と削蹄後とのひずみ波形の比較では,内外蹄側壁のVertical方向のひずみに,波形の位相の相異が認められた。(Fig. 241)。蹄尖壁のVertical方向ならびにHorizontal方向のひずみ量について検討した結果,Table 6に示す通りVertical方向のひずみ量は,削蹄後における削蹄前の測定部位と相対的な位置関係を有する部位で最も大きく,次いで,削蹄後における削蹄前の測定部位と同一部位,削蹄前における測定部位の順であった。また,Horizontal方向のひずみ量は,削蹄後における削蹄前の測定部位と相対的な位置関係を有する部位で最も大きく,次いで,削蹄前における測定部位,削蹄後における削蹄前の測定部位と同一部位の順であった。 以上の各所見から,装蹄による前蹄の運動の変化は,離地と着地を含む離地期全般において認められ,また,蹄の下方に至るほど顕著であり,主として動きの量的な相異であることが明らかにされた。これらの事実は,連鎖機構としての蹄関節の運動特性に深い関連性を有するものと考えられた。また,装蹄の前蹄運動におよぼす影響は,蹄鉄の磨擦係数,蹄鉄の重量,蹄釘の使用による蹄踵の弾発性の阻害,上彎による蹄の離地反回の推進,などが関与するものと推察された。 削装蹄による前蹄壁への影響は,離地を含む着地期全般に亘り,蹄壁全体に認められ,結果として,装削蹄は,蹄壁各部における緊張,弛緩などの力学的なストレスに影響を与えることが明らかにされた。すなわち,蹄鉄の装着,蹄釘の蹄踵部への設置,上彎,削蹄などによって,体重負脱に伴う蹄固有の変形状態が相異し,それに伴い蹄壁の内部応力の分布が相異するものと推察された。 |
|||||
Abstract | ||||||
内容記述タイプ | Other | |||||
内容記述 | The fundamental rules of horseshoeing in Japan at present are based on the theories of "foot axis" and "hoof stability". The objectives of horseshoeing are to protect the feet and hoofs, to improve motor ability, and to treat various diseases of the locomotive organs. In horseshoeing much attention is given to several points. In order to protect hoof mechanics, extended branches are set and the region in which horseshoe nails are driven is restricted. In order to protect muscles and tendons, rocker-toes are attached to horseshoes. However, these theories are mostly supported experimentally and have not yet been proven scientifically. In this study the effects of horseshoeing on the movements of the horse's forefeet and on the wall of the anterior hoofs were experimentally examined. Two riding horses which could walk normally were used for the experiment. Some of the anterior hoofs were unshod. Flat horseshoes were attached to the internal and external quarters of the anterior hoofs with 4 horseshoe nails and to the internal and external quarters of the heel with 8 horseshoe nails. Horseshoes with rocker-toes were attached to the internal and external quarters with 4 horseshoe nails. Hoof parings also were attached. These experimental horses were walked, trotted, and cantered on a flat, solid, asphalt road. A 16 mm-cinefilm of the left forefeet was taken while the horses were being walked, strain on the quarters was measured by a strain gauge, and lateral transformation of the heel was measured by a transformation transducer manufactured for trial. In order to analyze the movements of the forefeet, the intersection of the pastern axis and the coronary band and 1/3 of the spinous process of the scapula, the shoulder joint, the elbow joint, and the spheroid joint were examined. Strain on the quarters was measured at the upper and lower toes, the internal and the external quarters, and the internal and the external heels. It was measured in two directions: in a "vertical direction", which was parallel with the horny tubules, and in a "horizontal direction", which intersected at right angles with the vertical plane. The transducer (in which carbon powder was used) was applied to the space between the internal and the external heels by means of a metal screwdriver. The following results were obtained. I. Effects of horseshoeing on movements of the forefeet (1) Effects of ordinary flat horseshoes A range of variation of acceleration in a vertical direction increased at the end of the swing phase in the carpal joints. When the hoofs touched the ground, sliding was observed. The degree of abdominal flexure increased in the swing phase in the spheroid joint. Acceleration in the direction of abdominal flexure increased at the end of the swing phase in the lower joints of the feet. (2) Effects of horseshoe nails driven at the heels Both acceleration in an anterior direction and acceleration in a posterior direction decreased at breakover of the coronary band and at the end of the swing phase in the coronary band, respectively. Angular acceleration in the direction of posterior flexure increased in the early period of the swing phase in the spheroid joint. (3) Effects of rocker-toes Acceleration in an anterior direction increased in the early period of the swing phase in the coronary band. Angular acceleration in the direction of abdominal flexure increased at the end of the swing phase in the spheroid joint. II. Effects of horseshoeing on the quarters of the anterior hoofs (1) Effects of ordinary flat horseshoes The quarters, especially the external quarter and the internal heel, as a whole tended to show different types of strain waves moving in a vertical direction, except for the toes. Characteristically, the shapes of the waves as a whole tended to be different. When waves moving in a horizontal direction in the internal and external quarters and in a vertical direction in the toes were examined, they generally tended to decrease. (2) Effects of horseshoe nails driven in the heels There was a difference in the shape of the strain waves among the quarters. As a characteristic phenomenon, transitory strain at breakover in the waves moving in a vertical direction in the toes and in a horizontal direction in the internal and external quarters either decreased, showing some defects, or disappeared. The quantity of strain waves moving in a horizontal direction in the internal and external quarters tended to decrease. Lateral transformation of the internal and the external heels was examined. The heels of hoofs shod with 4 horseshoe nails driven in the internal and external quarters dilated from the early period to the middle period of the stance phase and constricted at breakover. This dilation of the heels after they touched the ground was observed early because of the horseshoe nails driven in the heels. The quantity of transformation generally tended to decrease with each gait. (3)Effects of rocker-toes There was a difference in the shape of the strain waves among the quarters. As a characteristic phenomenon, transitory strain at breakover in the waves moving in a vertical direction in the toes and in a horizontal direction in the internal and external quarters either decreased very much or disappeared. There was a difference in the shape of the strain waves moving in a vertical direction in the external quarter. The quantity of strain waves moving in a vertical direction in the toes tended to decrease. (4) Effects of hoof paring Based on the fact that there is a difference in the length of the quarter before and after hoof paring, two sites for measuring strain after hoof paring were determined: one correlative to the site of measurement before hoof paring and the other corresponded to the site of measurement before hoof paring. The shapes of the strain waves at these two sites were similar. However, there was a difference in the shape of the strain waves moving in a vertical direction in the internal and the external quarters before and after hoof paring. The quantity of strain waves moving in vertical and horizontal directions in the toes was examined. The quantity of strain waves moving in a vertical direction after hoof paring was the greatest at the site which correlated to that of measurement before hoof paring, the site which corresponded to the site of measurement before hoof paring, and the site of measurement before hoof paring, respectively. The quantity of strain waves moving in a horizontal direction after hoof paring was the greatest at the site which correlated to that of measurement before hoof paring, the site of measurement before hoof paring, and the site which corresponded to the site of measurement before hoof paring, respectively. After horseshoeing, changes were observed in the movements of the forefeet during the entire period of the swing phase, including breakover and the time when the hoofs touched the ground. Such changes became more remarkable in the lower part of the feet, showing a quantitative difference of movements. These facts seemed to be related to the characteristics of movement of the foot joint as a chain reaction. The effects of horseshoeing on the movements of the forefeet seemed to be related to the frictional coefficient of the horseshoe, the weight of the horseshoe, the inhibited elasticity of the heels due to horseshoe nails, an increase of breakover in the hoofs due to rocker-toes, etc. The effects of horseshoeing on the quarters of the forefeet were observed in the whole quarter during the entire period of the stance phase, including breakover. It was concluded that horseshoeing affects dynamic stress such as tension, relaxation, etc. in each part of the quarter. These influences seemed to be due to a difference of distribution of internal stress in the quarters and to the difference of physiological movement of the hoof associated with increased body weight due to the attachment of horseshoes, the use of horseshoe nails in the heels, the use of rocker-toes, hoof paring, etc. |
|||||
学位名 | ||||||
学位名 | 獣医学博士 | |||||
学位授与機関 | ||||||
学位授与機関名 | 麻布大学 | |||||
学位授与年月日 | ||||||
学位授与年月日 | 1981-02-04 | |||||
学位授与番号 | ||||||
学位授与番号 | 乙第175号 | |||||
著者版フラグ | ||||||
出版タイプ | AM | |||||
出版タイプResource | http://purl.org/coar/version/c_ab4af688f83e57aa |