@phdthesis{oai:az.repo.nii.ac.jp:00005419, author = {氷海, 幸子}, month = {2021-04-28, 2021-04-05}, note = {Chapter 1 Introduction Lymphoma is the most common hematopoietic neoplasia in dogs. It is routinely treated with a multi-agent chemotherapy protocol, such as the combination of cyclophosphamide, doxorubicin, vincristine, and prednisolone (CHOP-protocol), which is currently the standard of care. Although the initial response rate for the multi-agent chemotherapy is high, in most cases the tumor recurs. Acquisition of drug resistance in canine lymphoma is a major issue in small animal clinical practice, but the mechanism has not been clarified. There are many possible causes for drug resistance in canine lymphoma, among which P-glycoprotein (P-glycoprotein) and breast cancer resistance protein (BCRP) (ATP-binding cassette (ABC) transporter family) are thought to play important roles. These transporters are cell membrane proteins responsible for drug excretion, which substrates are many anticancer agents such as vinca alkaloids, anthracyclins, and taxanes. In humans, research on the expression analysis of these transporters in tumor cells and patients has been reported, but in dogs, research by gene analysis has been mainly conducted, and analysis of expression localization in tumor tissues has not yet been reported. Therefore, in this study, we investigated the expression localization of the drug excretion transporter in the dog tumor tissues to reveal the involvement of the drug excretion transporters in the drug resistance acquisition mechanism. Chapter 2 Evaluation of drug excretion transporter expression in canine lymphoma Immunohistochemical examination of P-gp and BCRP in 43 cases of canine lymphoma revealed that P-gp or BCRP were expressed in about 40% of canine lymphomas, and its localization was found in the capillary endothelial cells, which is similar with cerebrum in the healthy dogs. In addition, it was shown that these transporters were significantly expressed in the cases in which the anticancer drug was administered as compared with the cases in which the anticancer drug was not administered, and the administration of the anticancer drug was involved in the expression of these transporters. To evaluate the expression of the drug excretion transporter in the capillary endothelial cells, capillaries were isolated from cases in which expression of P-gp and BCRP was confirmed, and Western Blotting analysis of BCRP was performed. As a result, a thicker band was observed in the capillary rich sample than in the whole sample, and it was clarified that the drug excretion transporter was localized in the capillary endothelial cells. Evaluation of the localization of P-gp and BCRP in CAP type cases revealed that they were present on the apical of capillaries. In the cases in which the expression of the drug excretion transporters before and after the anticancer treatment was evaluated, the drug excretion transporters were not observed before the anticancer treatment but expressed after the anticancer treatment. In addition, from the information on cases for which the medical history has been clarified, it was suggested that substrate administration may be involved in expression of drug excretion transporters. Based on the results, it is considered that the expression of the drug excretion transporters is induced in the tumor capillary endothelial cells by the substrate administration and the blood tumor barrier is formed. Chapter 3 Blood tumor barrier formation in tumor capillary endothelial cells In Chapter 2, it was suggested that canine lymphoma may induce capillary endothelial cells to form a blood-tumor barrier which is similar with blood brain barrier in cerebrum capillary endothelial cells. However, the blood-brain barrier in the cerebral capillary endothelial cells has tight junctions in gap between the cells. Furthermore, not only the transporter expressed on the cell membrane but also the physical transfer of substances to the brain parenchyma outside the blood vessel are suppressed by surrounding the outside of the blood vessel with astrocytes. In contrast, in the capillary endothelial cells of the lymph nodes the tight junctions are not developed well. If the tight junctions are not developed well, even if a drug excretion transporter is found in the lymphoma, it may pass through the intercellular spaces and not function as a transporter. Therefore, in Chapter 3, it was decided to evaluate whether or not a tight structure is observed in the capillaries of lymphoma. Adhesive proteins of intratumoral capillaries were evaluated for morphological search of intratumoral capillaries. As a result, expression of tight junction proteins (ZO-1 and Claudin 5), which are not originally found in lymph node capillaries, was observed. The expression of ZO-1 is associated with P-gp and BCRP. Therefore, it was suggested that the drug excretion transporter was expressed in the apical membrane of the intratumoral capillaries and at the same time, the formation of tight junctions was promoted. These results suggest that morphologically, a blood tumor barrier may be formed in the tumor tissue of lymphoma, and it is considered that this barrier tissue may influence the development of multidrug resistance of lymphoma. In this study, although the functionality has not been clarified, it is revealed P-gp and BCRP may be involved in pharmacokinetics by a unique mechanism in canine lymphoma morphologically., 第1章 緒言  リンパ腫はイヌにおいて最もよくみられる造血器腫瘍の一つであり、その治療として、複数の薬剤を使用する多剤併用療法(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾロンを組み合わせたCHOP療法など)が標準的に行われる。多剤併用療法は治療初期には高い奏効率を示すものの、多くの症例で再発がみられ高率に薬剤耐性を示すことが知られている。イヌのリンパ腫の再発例における薬剤耐性獲得は、小動物臨床において大きな課題であるが、その機序は明らかにされていない。  イヌのリンパ腫の薬剤耐性には多くの原因が考えられるが、その中でもATP依存的に薬物を排出するATP-binding cassette (ABC)トランスポーターファミリーに分類されるP糖タンパク質(P-glycoprotein:P-gp)およびbreast cancer resistance protein (BCRP)などが重要な役割を果たしていると考えられている。これらのトランスポーターは細胞膜における薬物排泄を担う細胞膜タンパク質で、vinca alkaloid類、anthracyclin類、taxane類などの抗がん剤を基質とする。ヒトでは腫瘍細胞や患者で薬剤排泄トランスポーターの発現解析の研究がなされているが、イヌでは遺伝子解析による研究が主体で、腫瘍組織内での発現局在の解析は未だなされていない。そのため、本研究では腫瘍組織内での薬物排泄トランスポーターの発現局在を解析することにより、薬物耐性獲得機構における薬剤排泄トランスポーターの関与の検討することとした。 \n第2章 リンパ腫における薬剤排泄トランスポーターの発現評価  リンパ腫43症例を対象にP-gpおよびBCRPの免疫組織化学的検索を実施したところ、約40%のリンパ腫にP-gpまたはBCRPが発現しており、その局在は、健康なイヌの大脳と同様、毛細血管内皮細胞であることが明らかになった。また、抗がん剤を投与した症例では非投与の症例に比べてこれらのトランスポーターが有意に発現していることが示され、抗がん剤の投与がこれらのトランスポーターの発現に関与していることが示唆された。  薬物排泄トランスポーターの血管における発現解析として、P-gpおよびBCRPの発現が確認された症例から毛細血管を単離し、BCRPのWestern Blotting解析を行った。その結果、Whole材料よりもCap rich sampleでよりバンドが太く認められ、薬物排泄トランスポーターが血管に局在していることが明らかとなった。  CAP typeの症例のP-gpおよびBCRPの発現部位を評価したところ、毛細血管の内腔側に存在していることが明らかとなった。  抗がん治療前後における薬剤排泄トランスポーター発現の評価を行った症例では、抗がん治療前には認められていなかった薬物排泄トランスポーターが抗がん治療後に発現していた。また、治療歴が明らかとなっている症例の情報から、抗がん剤や治療の中でも、それぞれのトランスポーターの基質投与が薬剤排泄に関与している可能性が示唆された。  以上より、トランスポーターの基質投与によって腫瘍血管に薬物排泄トランスポーターの発現が誘発され、大脳で認められるような関門形成つまり、血液腫瘍関門をしている可能性が考えられた。 \n第3章 腫瘍血管における血液腫瘍関門形成について  第2章で、イヌのリンパ腫で血液腫瘍関門を形成している可能性が示唆されたが、血液脳関門である大脳毛細血管内皮細胞は無窓構造であり、細胞間に密着結合が認められる。さらに、血管外を星状膠細胞が取り囲むことで、細胞膜に発現したtransporterだけでなく、物理的にも血管外の脳実質への物質の移行を抑制する。それに対して、リンパ節の毛細血管内皮細胞では密着結合が未発達である。密着結合が未発達であると、リンパ腫に薬剤排泄トランスポーターが認められたとしても、細胞間隙を通り抜けてしまい、トランスポーターとしての機能を有さない可能性がある。そのため、リンパ腫の毛細血管に密着構造が認められるかを第3章で評価することとした。腫瘍内毛細血管の形態的検索として、腫瘍内毛細血管の接着タンパクを評価した。その結果、本来リンパ節の毛細血管では認められない密着結合タンパク(ZO-1およびClaudin 5)の発現が認められ、ZO-1においては、その発現がP-gpおよびBCRPとの関連していることが示された。以上より、腫瘍内毛細血管において薬物排泄トランスポーターが発現すると同時に密着結合の形成を促進する傾向が認められた。  これらの結果より、形態学的にリンパ腫の腫瘍組織内に血液腫瘍関門を形成している可能性が示唆され、この関門組織がリンパ腫の多剤耐性発現に影響している可能性が考えられた。本研究では、機能性については明らかできていないが、形態学的にP-gp, BCRPがイヌのリンパ腫において、ユニークな機序により薬物動態に関与する可能性を示した。}, school = {麻布大学}, title = {イヌのリンパ腫における薬剤耐性機序に関する研究}, year = {} }