@article{oai:az.repo.nii.ac.jp:00005153, author = {堂ヶ崎, 知格 and 関, 亘 and 角野, 洋一 and 川上, 泰 and Dogasaki, Chikaku and Seki, Wataru and Kakuno, Yhoichi and Kawakami, Yasushi}, journal = {麻布大学雑誌, Journal of Azabu University}, month = {Mar}, note = {ササクレヒトヨタケの抽出画分について,生理活性の一つであるマイトジェン活性能をスクリーニングしたところ,熱水抽出-非透析性画分(C-2)に強い活性が認められた。C-2の活性本体を明らかにするために,C-2をイオン交換クロマトグラフィーにより分離・精製した。その結果,主に中性糖からなるC-2-1(84.8%の中性糖と17.3%の酸性糖からなる)画分と酸性糖を多く含んだC-2-2(69.7%の中性糖と30.9%の酸性糖から構成される)画分の二つのメジャーな画分に分離した。糖組成を検討するために,常法により糖のGLC分析を行った結果,C-2-1の構成糖とモル比は,Rha,Fuc,Xyl,Man,Gal,Glc (0.1: 0.3: 1.2: 1.0: 1.4: 3.3)であり,C-2-2では,Rha,Fuc,Xyl,Man,Gal,Glc (0.4: 0.4: 0.1: 0.5: 1.0: 13.6)であり,特に,C-2-2はGlcの含量が高いことがわかった。また,C-2-1およびC-2-2の両画分について,マイトジェン活性の存在を検討した結果,C-2-2の方に強い活性が認められたので,これ以後はC-2-2について詳細な解析を行うこととした。活性本体の化学構造を明らかにするために各濃度段階のTFAを用いて部分水解を行った。つまり,C-2-2を0.01M,0.05M,0.1M TFAで順次加水分解し,それぞれの水解物を蒸留水透析した後,透析性画分CD-1,CD-2およびCD-3と非透析性画分CN-1,CN-2及びCN-3を得た。各画分について,マイトジェン活性の所在を検討したところ,いずれの透析性画分にも活性は認められなかったが,非透析性画分ではすべての画分が活性を示すことがわかった。しかしながら,最も高濃度のTFAで加水分解したときの非透析性画分CN-3は,CN-1およびCN-2と比較すると顕著にその活性が弱くなった。このことから,CN-2はC-2-2の活性本体であることが強く示唆された。またGLC分析により構成糖及びモル比を測定したところ,CN-2はFuc,Xyl,Man,Gal,Glc (0.2: 0.2: 0.2: 1.0: 51.4)であり,主にGlcから構成されることがわかった。以上より,Glcからなる構造ないしはその結合様式がCN-2の活性に最も重要であることが推測された。また,CN-2は約30%の酸性糖を含むことから,Taylor&Conradの還元法により酸性糖部分を還元し,同様に構成糖およびモル比を測定した結果,還元前に比して顕著にGlcが増加した。従って,このことはCN-2の構成酸性糖GlcAに由来していることが示唆され,CN-2はGlcとGlcAから構成されるヘテロ多糖であることが明らかになった。今後,活性と化学構造との相関をさらに検討してゆく予定である。, One of the edible mushrooms, Coprinus comatus (CPCM), was successively extracted in a similar fashion with water at ambient temp., with hot water at 100℃, with 0.1 M NaOH at ambient temp., with 0.5 M NaOH at ambient temp. and with 0.05 M NaOH at 100℃. The crude polysaccharides, the non-dialyzable fractions of these extracts were designated C-1 ~ C-5, respectively. In order to investigate the biological activities of each fraction, the mitogenic activities using spleen cells of C3H/HeN and C3H/HeJ mice, and the growth inhibition of cancer cells using MCF-7 were examined as the biological activation assays in vitro. In consequence, both the polysaccharide fractions extracted with cold water (C-1) and hot water (C-2) exhibited clearly mitogenic activities in comparison with the other fractions. The soluble fraction extracted with 0.05 M NaOH (C-5) showed the most remarkable growth inhibition (inhibitory rate : 30%). C-5 showed the highest sugar content (74.0%). In the next place, C-2 showed higher sugar content (66.4%) and much more yield (2.08%) than the others. The sugar content of C-1 was less than 30%. C-2 consisted of 44.1% neutral sugar and 22.3% uronic acid. It was decided to investigate the chemical properties of C-2 further because it had much higher yield and higher carbohydrate content than the other fractions. The constituents of neutral sugars in C-2 were identified as Xyl, Man, Gal, Glc in molar ratio of approximately 0.4 : 1.0 : 1.3 : 3.5. These results suggested that the mitogenicity was dependent on the polysaccharide moieties. It was concluded that the chemical properties of bioactive fractions from CPCM should be examined more minutely. To purify the bioactive fraction, C-2, was submitted to an ion-exchange chromatography, and was separated into two major fractions, C-2-1 and C-2-2. Both fractions exhibited the similar mitogenic activities. For the first stage, it was chosen to physiochemical properties of C-2-2 that possessed much more yield and showed mitogenic activity stronger than the other. C-2-2 contained protein (1.0%), and the polysaccharide which consisted of neutral sugar (69.7% as Glc) and uronic acid (30.9% as GlcA). The constituents of neutral sugar in C-2-2 was composed of Rha, Fuc, Man and Glc in a molar ratio of 0.4 : 0.4 : 0.5 : 1.0 : 13.6. When C-2-2 was reduced by the Taylor and Conrad method, the molar ratio of Glc in that increased evidently rather than the C-2-2 of prereduction. These results suggested that the uronic acid in C-2-2 was dependent on GlcA. Controlled hydrolysis of C-2-2 was performed with 0.01M, 0.05M and 0.1M TFA. It was confirmed that in comparison with non-dialysates fraction of 0.01M TFA controlled hydrolysates (CN-1) and non-dialysates fraction of 0.05M TFA controlled hydrolysates (CN-2), the activity of non-dialysates fraction of 0.1M TFA controlled hydrolysates (CN-3) was shown to become more weak. At this result, CN-3 was considered de-gradated residue of CN-2, and it was suggested that CN-2 was the active core portion of C-2. The reduction of acid sugars was performed by the Taylor & Conrad method to identify the acid sugars in CN-2. The result was showed that the volume of Glc in reduced CN-2 increased clearly much more. So, it was suggested that the increasing of Glc in reduced CN-2 was derived from GlcA included in CN-2, P(論文), 特集, application/pdf, FEATURE ARTICLES}, pages = {236--240}, title = {食用茸であるササクレヒトヨタケ成分の生理活性について}, volume = {13/14}, year = {2007}, yomi = {ドウガサキ, チカク and セキ, ワタル and カクノ, ヨウイチ and カワカミ, ヤスシ} }