@misc{oai:az.repo.nii.ac.jp:00003248, author = {谷津, 壽郎 and Yatsu, Juro}, month = {2013-02-20, 2014-08-19, 2013-02-20}, note = {Swine lymphoma (malignant lymphoma, lymphosarcama) is usually found in the postmortem inspection of meat hygiene by veterinarians. The rate of frequency of this condition is believed to be one to two cases per 100,000 slaughtered pigs in the many developed countries. There have been a considerable number of papers describing anatomical, histopathological and cytopathological characteristics of the disease, including some cell lineages, but there were few papers on hematology, chromosome aberrations of neoplastic cells, and stages among lymphoma cases of this species. There have not been any papers on chromosome analysis of a considerable number of series. In the present study, the author developed a new chromosome preparation technique for pigs and carried out chromosomal analyses on 50 cases out of 138 pigs with lymphomas detected in the routine meat inspection and examined histopathologically in Miyagi Prefecture locating in the northern-east of JAPAN, during 1977 to 2005. Development of a new chromosome preparation technique for pigs. In the early stage of the present study, the author employed a standard cultural method for obtaining chromosomal samples in slaughtered pigs. The author developed a direct chromosome preparation technique for swine, because it was necessary to decrease false positive results in detecting a chromosome abnormality by the culture method. This direct chromosome preparation technique decreased the false chromosome abnormality and gave suitable specimens even in the unfavorable circumstances as in the local meat hygienic inspection office. Using this method based on an appropriate hypotonic treatment of targeted cells in the refrigerator, the author succeeded to obtain chromosome specimens from blood and neoplastic tissues taken within two hours and processed within 12 hours after slaughter. The ratio of normal karyotype of peripheral blood sample obtained by culture methods with or without PHA, and a direct preparation were 84.2%, 73.2%, and 96.3%, respectively. The results were similar in blood samples taken from axillary vein of the carcass. Results of chromosome analysis of cells in the blood samples: (1) Abnormality in chromosome number was present in about 70% of chromosome samples prepared by culture method without PHA, about 60% of culture method with PHA, and about 40% of new direct technique among blood samples of swine lymphoma cases. (2) Chromosome aberrations seen in the cultured blood samples were four non-clonal abnormalities, and nine clonal abnormalities. Clonal abnormalities were sub-classified into two deficient types, three additional types, two examples of overlapped deficient and additional types, one example of overlapped additional and translocation types and one example of overlapped translocation and deficient types. (3) By new direct preparation technique, the chromosome aberration was seen in eight multicentric, one alimentary, and one miscellaneous type swine lymphoma. Based on chromosome analysis, eight multicentric type swine lymphomas were divided into three non-clonal, and five clonal examples. Clonal abnormalities were two additional types, two translocation types, one deficient or additional type, and one partial deficient type. One alimentary and one miscellaneous swine lymphomas were non-clonal abnormality. Results of chromosome analysis of tumor cells: Chromosomes of 16 multicentric swine lymphomas were composed of two normal karyotypes, three non-clonal abnormalities, and 11 clonal abnormalities. Clonal abnormalities were one deficient type, four additional types, three translocation types, one partial additional type, one partial deficient type, and one translocation-euploid type. Eleven cases of alimentary swine lymphoma included three normal karyotypes, five non-clonal abnormalities, and three clonal abnormalities. Clonal abnormalities were subdivided into one deficient type, one deficiency and additional type, and one euploid type. Three thymic type swine lymphomas were one normal karyotype, and two clonal abnormalities: additional type overlapped with partial deficient and one translocation overlapped with partial deficient type. Four miscellaneous cases of swine lymphomas were two normal karyotypes, one non-clonal abnormality and one clonal abnormality of translocation type. Type of swine lymphoma and chromosome aberration: Present study failed to reveal the characteristic chromosome aberration of any type of swine lymphoma according to clinico-pathological classification proposed by Jarrett and Mackey and LSG classification developed and used in Japan. Cells with "normal karyotype" pattern and non-clonal abnormality were rather small in number and seemed to remain in the first stage of alteration. These abnormal cells with minimal chromosome changes were not distinguished from the apparently healthy pig cases. The chromosome aberration seemed to progress from the first single aberration to double, or more complicated ones. The degree of chromosome aberrations seemed to agree well with the stage and the nature of the disease. In 80% of swine lymphoma cases diagnosed pathologically, neoplastic cells showed chromosomal abnormalities in the number and morphology caused by chromosome nondisjunction, spindle body suppression, chromosome bonding, chromosome hyperplasia, etc. Always, the cells with chromosome aberration existed together with normal cells, and the ratio varied both in tissues and blood. On the other hands, cells with clonal abnormalities, which turned into cancer cells, proliferated explosively. Cancer cells with clonal abnormalities showed multistep alterations in chromosome both in number and shape interpreted as single or complicated chromosome aberrations, so-called "karyotype evolutions". Steps of karyotype change seemed to require various periods of time. In the early stage, it needed rather long time, because the many barriers such as immune system and apoptosis of the living body were considered to suppress these abnormal cell growths, but after onset of detectable cancerous change, chromosome abnormalities seemed to develop rapidly according to the disease progression. In chromosome analyses of blood sample, 70% of specimens had the same abnormality as in those of neoplastic tissues. However, in swine lymphoma cases with slight or minimal gross lesions, blood contained few neoplastic cells and leukemic change might be a terminal change after or coincident with development of widespread gross lesions. In conclusion, swine lymphoma cases showed abnormal changes in chromosomes with karyotype evolution. It was possible to interpret the stage and severity of the disease, when one introduced the karyotype analysis as one of routine examination methods in addition to observations of anatomical types, distribution of neoplastic lesions, and cellular morphology., 【背景と目的】  豚リンパ腫は、病理解剖学的な病変分布、病理組織・細胞学的特徴に基づく分類がなされてきたが、免疫学的手法による細胞質内免疫グロブリンや表面抗原の検出および超微形態学的所見など腫瘍細胞の由来を明らかにする手法が開発され、従来の分類に検討が加えられてきた。近年は、動物の造血器腫瘍についても免疫組織化学的解析をはじめとするさまざまな所見を総合するヒトの新WHO分類と同様の分類法が提案されている。しかし、豚リンパ腫症例の血液検査所見および染色体異常に関する報告はない。  本研究は「豚染色体の簡易な検査法」を確立し、染色体異常の核型進化を基礎にして、豚リンパ腫の病態を解明することを目的とする。 【材料と方法】  1976~2005年に宮城県内のと畜場で発見され、病理学的にリンパ腫と診断された症例について染色体検索を実施し、50例の染色体標本を得て、それらを詳細に分析した。解剖学的病型はJarret and Mackeyの分類に従い、組織・細胞学熱病型はLSG分類に従ってとりまとめた。染色体標本の作製は、末梢血と腫瘍化したリンパ節および腫瘍結節などの細胞を材料とし、培養法と本研究で開発した直接法に拠った。核型分析は、PARIS conferenceに準拠した。 【結果】 1. 豚染色体の直接検査法(直接法)の開発  と殺解体後2時間以内に血液を採取し、冷蔵庫内で保存し、12時間以内に染色体標本を作製すれば、G、C分染法でも解析することが出来た。 2. 血液を材料とする染色体検査で認められた染色体異常 (1)対照群の生体血の染色体数正常率は、PHA無添加培養法【PHA(-)】84.2%、PHA添加培養法【PHA(+)】73.2%、直接法96.3%で、と体面血の成績もほぼ同率であった。 (2)豚リンパ腫の罹患例の血液では、PHA(-)の約7割、PHA(+)の約6割および直接法の約4割で、染色体数の異常細胞の存在が明らかになった。この染色体異常の頻度差は、正常染色体の得られる比率からみて「培養」の影響と思われた。 (3)血液の培養法では、多中心型8例、消化器型4例、胸腺型1例で染色体異常が認められた。 イ. 多中心型8例の染色体による分類は、非クローン性異常2例、クローン性異常6例であった。クローン性異常は、欠失型2例、付加型1例、欠失型・付加型、付加型・転座型、転座型・欠失型それぞれ1例に細分類された。 ロ. 消化器型4例は、非クローン性異常1例、クローン性異常3例であった。クローン性異常は、付加型2例、欠失型・付加型1例に細分類された。 ハ. 胸腺型1例は非クローン性異常であった。 (4)血液の直接法では、多中心型8例、消化器型1例、その他1例で染色体異常が認められた。 イ. 多中心型8例の染色体による分類は、非クローン性異常3例、クローン性異常5例であった。クローン性異常は、付加型2例、転座型2例、付加型と部分的欠失型の単独または重複1例に細分類された。 ロ. 消化器型1例とその他1例は非クローン性異常であった。 3. 腫瘍細胞を材料とする染色体検査で認められた染色体異常 (1)多中心型16例の染色体は、正常核型2例、非クローン性異常3例、クローン性異常11例であった。クローン性異常の細分類は、欠失型1例、付加型4例、転座型3例、部分的付加型1例、部分的欠失型1例、転座・倍数型1例であった。 (2)消化器型11例の染色体による分類は、正常3例、非クローン性異常5例、クローン性異常3例であった。クローン性異常の細分類は、欠失型1例、欠失・付加型1例、倍数型1例であった。 (3)胸腺型3例の染色体による分類は、正常核型1例、クローン性異常2例であった。クローン性異常の細分類は、付加型と部分的欠失型重複1例、転座・部分的欠失型1例であった。 (4)その他4例は、正常核型2例、非クローン性異常1例、クローン性異常1例であった。クローン性異常の1例は転座型であった。 4. 病型と染色体異常の関係  解剖学的病型、あるいは組織・細胞学的病型に特徴的な染色体異常は認められなかった。 【考察】  病理学的に豚リンパ腫と診断された約8割の症例の腫瘍細胞には、染色体不分離、紡錘体抑圧、染色体接着、染色体過形成などによって生じた数の異常と形の異常があった。組織・血液でみられた染色体異常細胞は、常に正常細胞と混在し、その比率は症例によってバラツキがあった。すなわち、染色体所見で分類された「正常核型」から「非クローン性異常」までは、染色体異常細胞の割合が少なく、しかも単独異常に止まっており、染色体所見のみで腫瘍化していると判断することは出来なかった。一方、「クローン性異常」では腫瘍化した細胞が爆発的に分裂増殖し、単独異常・重複異常を起こして核型進化していた。これらの変異には時間差があり、発病初期は緩やかに、腫瘍顕在化後は極短時間に激しく変異しながら進行するものと考えられ、病期や病勢と良く一致するように思われた。また、血液の染色体検査では、組織の腫瘍細胞で染色体異常が確認された症例の約7割で同じ異常細胞が確認された。しかし、肉眼病変が軽度な症例の血液ではこのような異常細胞は認められず、末期に病変が重度になって腫瘍細胞が血液に流入するものと考えられた。 【結語】  豚染色体の直接検査法を開発した。これと培養法によって得られた染色体異常の型別分類と血液検査所見および病理解剖学的病型と病理組織学的分類を重ね合わせることによって、豚リンパ腫には急性期、緩慢期、急性転化期があるものと考えられた。}, title = {豚リンパ腫の染色体異常に関する研究}, year = {} }