@misc{oai:az.repo.nii.ac.jp:00003220, author = {齋藤, 康秀}, month = {2013-06-22, 2014-08-18, 2013-02-19}, note = {Studies on the artificial infection of chicken with the large roundworm, Ascaridia galli, with special reference to the factors influencing the infection The large round worm of chicken, Ascariaia galli, is one nematode species favorable for an experimental model of bird-nematode system, because chickens, as a host of this nematode, are easily available and reared and the ascarid is large enough to be easily manipulated with naked eye. It is necessary to obtain easily and reliably artificially infected birds with the ascarid to establish the experimental model system. Many reports have been published on this nematode and were reviewed by Mozgovoi(1953)^59) and Soulsby(1965)^74), but, most of them were made on the treatment and prevention of the infection. The chicken ascarid has a simple and direct life cycle and some factors have been pointed out to influence the infectivity and development of this nematode in the host. In many experimental infections no correlation has been recognized between the number of mature worms parasitic in chickens and that of the number of embryonated eggs inoculated to them, and more than a half of the chickens that experimentally inoculated with embryonated eggs harbor no adult worm in the digestive tract. The method to obtain the chickens that harbor many adult ascarid worms by experimental inoculation with embryonated eggs has not been established. This study was conducted to determine the factors that had been pointed to influence the infectivity of ascarids to chickens, which can be divided into three groups concerning to host, parasite and ecological aspect. This study was also made to explain the ecological aspects of the ascarid such as the distribution of larval and adult ascarid worms in the digestive tract of chickens, the biological rhythm of egg output, and the discharge of eggs and worms during patent period with the artificially infected chickens. And also examined the efficacy of parbendazole against the different developmental stages of the nematode in artificially infected chickens with the ascarid by the new feeding method devised in the present study. The possible host factors that seem to affect the infectivity of the nematode to host were host age, quality and quantity of food, time of inoculation, environmental temperature in poultry house and immunological status of chickens. On the other hand, the possible parasite factors were the incubation and preservation period of eggs, inoculation method and the number of eggs inoculated to chickens and the additional development of larvae in other than the final host. Furthermore, the coexistence of coccidian infection and the transmission of the nematode by soil invertebrates were also supposed to be ecological factors. The role as the vector and/or accumulate host of the nematode was examined on the following 18 species of soil animals: 3 species of earthworms (Eisenia foetida, Pheretima communissima and Pheretima hilgendorfi), 6 millipedes (Epanerchodus sp., Anaulaciulus pinetorum, Japanosoma sp., Hyeoglomeris sp., Neayopus sp., Niponia sp.), 3 isopodes(Armadillidium vulgare, Metoponorthus pruinosus, Orchestia sp. ), 3 land snails(Bradybaena similaris, Stereophaedusa japonica, Zonitoides sp.) and 3 insects (Periplaneta fuliginosa, Trnebrio sp. Conocephalus gladiatus). Results Host factors The inoculation times of eggs to the host, administration of immunosuppresive drugs and supplement of enough amount of vitamin A to ration had no effect on the infectivity nor the development of the nematode, while the age of chickens, the high room temperature of poultry house, the feeding on basal ration supplemented with skim milk, fish meal, commercial ration and calcium, and on well balanced ration inhibited the development of the nematode in chickens. On the other hand, low room temperature and basal cereal ration composed of only several kinds of cereals promoted the development of the nematode in chickens. The basal ration prevented the expelling of the worms from host birds when chickens were continuously fed on it from the time of inoculation of embryonated ascarid eggs to 15 days later. Parasite factors Preservation of embryonated eggs for more than 6 months at room temperature and a single inoculation of more than 50 embryonated eggs inhibited the establishment of the infection in chickens, while a serial inoculation of small numbers of embryonated eggs promoted the infectivity of the nematode. In the experiments with chickens fed commercial ration, the recovery rates of larvae from the intestine were 56.6 and 6.5% on days 12 and 15 respectively, after inoculation of eggs, and the chickens discharged many larvae in the feces during this period. When the larvae passed in the feces, their 40% were normal in morphology and 34% were still alive. Alive larvae in the feces were not infective to chickens when orally inoculated to them. But, all the larvae discharged in the feces died within 24 hours. There existed a significant correlation between the number of embryonated eggs inoculated and that of larvae recovered from the intestine on days 11 and 12 after inoculation(coefficient of correlation; r=0.90), whereas in the case of adult worms no correlation existed between the number of embryonated eggs inoculated and that of worms recovered. Nearly half the chickens inoculated with eggs had no adult worm. This shows that a few chickens can be infected with adult ascarids by a single inoculation of embryonated eggs when fed with commercial ration. Ecological factors Coccidian oocysts inoculated with embryonated eggs were not promoted in infectivity. Soil invertebrate animals as the transmitter of the ascarid were fed with embryonated eggs. The hatchability of the eggs was very low in three species of land snails. Ascarid larvae hatched in the digestive tract of soil animals were expelled from soil animals within a few days after inoculation except for 7 species of millipedes. The earthworm, E.foetida, did not act as a vector nor accumulate host of A.galli. Embryonated eggs of A.galli hatched in the digestive tract of millipedes and the larvae penetrated the intestinal wall then located in the anterior most part of hindgut. And millipedes harbored these larvae for a long period of time. A species of millipede, Epanechodus sp., had A.galli larvae 135 days after ingestion of embryonated eggs. The larvae in millipedes changed in body size but ecdysis was not observed until day 135 after ingestion of eggs. The larvae recovered from millipedes were more infective to chickens than embryonated eggs. Millipedes collected in poultry farms in Kanagawa Prefecture were infected with larvae of A.galli and H.gallinae. When such millipedes infected with larvae of A.galli and/or H.gallinae were fed to chickens, both species of larvae developed into adult worms. This result shows that millipedes act as a vector and/or accumulative host of A.galli and H.gallinae in the field, but it is painstaking to maintain millipedes as an accumulative host in the laboratory. Since chicken ascarids can develop without vector nor accumulative hosts such as millipedes, it is more convenient in the laboratory to produce chickens parasitized with adult ascarids by oral inoculation of embryonated eggs than by feeding accumulative hosts of infective larvae. In the present study chickens were successfully infected with adults ascarids by oral inoculation of embryonated eggs on day at 12 of age and were fed with basal ration until day 15 after inoculation with worm eggs and after that with commercial ration without any anthelminthic drugs. This method of feeding of ascarid inoculated chickens is called as "the convert feeding method with basal-commercial ration". In chickens raised by this method of feeding, 10 to 74% of eggs inoculated developed into adult worms. Biology of ascarid worms in chickens infected by the convert feeding method with basal-commercial ration 1. Distribution of larvae and adults in the digestive tract of the host From days 10 to 12 after inoculation of worm eggs, larvae were found in the intestine from the anterior most of duodenum to the anus except the cecum. Larvae were most frequently found in the middle parts when the intestine was divided into 5 parts of equal length. Only a few larvae were recovered from the posterior most part of intestine. The same tendency as found in the case of larva was observed in the case of adult worm, but they were never recovered from the posterior most part of intestine. 2. Circadian rhythm in egg output The minimum number of eggs was passed in the feces at 8 am. in all the cases, however, the time when the maximum number of eggs was observed differed depending on the number of worms parasitic in chickens, and the greater so as the number of worms parasitic in chickens, the more was delayed the time of maximum egg. 3. Eggs and worms discharged from the chicken during the patent period The total number of eggs per worm discharged during the patent period differed depending on the number of worms parasitic in chickens. The number of eggs discharged from the moderately infected birds were greater than those from the slightly or severely infected ones. The number of worms expelled from the chickens also differed according to the worm burden. The greater was the umber of worms parasitic in chickens, the more was delayed the time when worms are expelled. 4. Efficacy of parbendazole, an anthelminthic drug, against the different developmental stages of ascarids in chickens Only 51.5% and 63.0% of worms were removed from the infected birds to which the drug was given on days 15 and 18 after inoculation of eggs, respectively, while 92.0% to 100% of worms were removed when the drug was administrated on other days. This shows that the drug was not sufficiently effective to larvae at ecdysis because ecdysis occurs on days 15 to 18 after oral inoculation of embryonated eggs to chickens 12 days old. It was made clear by using chickens raised by the method of convert feeding of basal-commercial ration that the efficacy of parbendazole was different against the different stages of ascarids, and that, in general, anthelminthic drugs are different in efficacy against different stages of parasite., 鶏回虫Ascaridia galliについては多くの研究がなされ,その成果はMozgovoi(1953)およびSoulsby(1965)によって総括されている。しかしながら,それらの研究のほとんどは鶏回虫症の臨床面すなわち,宿主側からのものである。本線虫は虫体の大きさが実験に適当で,しかも宿主が鶏で入手および飼育が容易であることより,鳥類に寄生する線虫の実験モデルとして好適なものの一つである。鶏回虫をこの目的に用いるためには感染鶏を自由に作出できることが最低限必要であるが,本線虫の感染鶏を確実に作出する方法は確立されていない。すなわち,直接発育をする本線虫の幼虫形成卵を鶏に投与してもほとんどの場合,投与虫卵数に応じた成熟虫体が得られない。  本研究では,現在までに本線虫の寄生に影響すると報告され,また考えられる因子について,これらを宿主側,寄生虫側および生態学的要因に分けて検討し,簡便かつ確実な鶏回虫感染鶏作出法を確立することを目的とした。さらにその方法によって作出した感染鶏における鶏回虫の生態についてもあわせて検討した。 ○感染に影響をおよぼす各因子の検討と人工感染鶏の作出  鶏回虫の寄生に影響をおよぼす因子のうち,宿主に起因するものとしては日齢,給与飼料の量および質,感染の時期,飼育温度および免疫状態を,寄生虫に起因するものとしては虫卵の培養および保存期間,虫卵の投与法および投与数およびコクシジウムとの同時感染について検討した。一方,生態学的要因としては,土壌動物または昆虫の移動・集積宿主としての役割について検討した。なお,土壌動物または昆虫としては,ヤスデ類(オビヤスデEpanerchodus sp.,フジヤスデAnaulaciulus pinetorum,ツムギヤスデJapanosoma sp.,マクラギヤスデNiponia sp.,アカヤスデNedyopus sp.およびタマヤスデHyeoglomeris sp.),ミミズ類(フツウミミズPheretima communissima,シマミミズ Eisenia foetida,フトミミズPheretima hilgendorfi),等脚類(オカダンゴムシArmadillidium vulgare,ホソワラジムシ Metoponorthus pruinosusおよびヒメハマトビムシOrchestia sp.),腹足類(オナジマイマイBradybaena similaris,ナミギセルStereophaedusa japonicaおよびコハクガイ Zonitoides sp.)および昆虫(クロゴキブリPeriplaneta fuliginosa,ゴミムシダマシTenebrio sp.およびオナガササキリConocphalus gladiatus )の計18種を用いた。  市販配合飼料を給与した雛の場合,幼虫形成卵投与後12および15日目の平均虫体形収率がそれぞれ56.6%および6.5%で,この間に寄生虫体の多くのものが糞便と共に排泄された。虫卵投与後,11および12日目の虫体回収率と投与虫卵数との相関係数はr=0.90で両者間には強い正の相関がみられた。しかしながら,成熟虫体数と投与幼虫形成卵数との間には相関は見られず,しかも無寄生および単数寄生のものが半数を占めていた。また,虫卵投与後12~15日の間に排泄された虫体の40%は形態学的に正常で,34%には運動性が見られたが,24時間以内に全てが死滅した。なお,このものは経ロ投与では雛への感染性が見られなかった。これらのことは,市販配合飼料給与雛に鶏回虫の幼虫形成卵を1回に投与したのでは寄生虫体数の揃った感染鶏を安定かつ確実に作出することが困難であることをしめしていた。  宿主側の要因としたもののうち鶏回虫感染との関係が否定されたものは感染の時期,免疫抑制剤の投与およびビタミンAを含む飼料中の脂溶性成分であった。一方,加齢,高い飼育温度,脱脂粉乳,魚粉,カルシウムの添加および市販配合飼料の給与は寄生を抑制した。しかしながら,低い飼育温度および飼料として穀物のみの給与は寄生を促進した。なお,12日齢の雛を用いる場合には,穀物性飼料は幼虫形成卵の投与から15日間の給与で効果があった。  一方,寄生虫側の要因としたもののうちコクシジウムの同時感染は本線虫の寄生を促進しなかった。また,幼虫形成卵を6カ月以上室温に保存することと多数虫卵を1回に投与することは寄生を抑制する働きがあった。一方,少数卵の連続投与は寄生を促進した。  鶏回虫の移動・集積宿主として検討した18種の土壌動物または昆虫のうち陸産貝類以外では摂取された鶏回虫の幼虫形成卵のほとんどがその消化管内で孵化したが,ヤスデ類以外では遊離幼虫は短期間内に体外に排泄された。なお,陸産貝類では孵化した鶏回虫幼虫形成卵は極めて少数であった。一方,その可能性が報告されている本線虫伝播にはたすシマミミズの役割については否定された。すなわちシマミミズに摂取された鶏回虫の幼虫形成卵はその消化管内で孵化するが,幼虫は発育することなく5日目までに体外に排泄され,体内に長期間保持されなかった。このミミズ体外に排泄された幼虫の感染力は虫卵内幼虫と同じであるが,排泄された幼虫は2日以内に全てが死滅した。このようにシマミミズには鶏回虫の移動・集積宿主としての役目はなく,ヤスデ類以外の土壌動物と同様,むしろ結果的に本種虫卵を殺滅する作用すなわち環境浄化作用がみられた。  ヤスデ類に摂取された鶏回虫の幼虫形成卵はその消化管内で孵化し,幼若虫は腸管壁を穿孔した後,後腸起始部の体腔側に形成された宿主由来の嚢状物に包まれ,長期にわたって生存していた。ヤスデ体内のこれら幼虫の大きさには変化が見られたが,脱皮は確認されなかった。このようにヤスデ類が鶏回虫の集積・移動宿主となることが明らかになった。また,本線虫はヤスデを通過することによって宿主への感染力が増大した。さらに,野外で採取したヤスデを雛に投与したところ鶏回虫および鶏盲腸虫の成熟虫体が得られた。このことより実際に野外でもヤスデを介してこれらの線虫の感染が起っていることが確認された。  ヤスデ類が鶏回虫の集積・移動宿主となることが明かになったが,実験的に寄生虫が感染した動物を作出する場合,中間宿主または移動・集積宿主となる動物を飼育管理することは作業量が多くなる不利がある。したがって,実験室内で本線虫の感染鶏を作出するには,可能ならばこれらの宿主を利用しない方が有利である。すなわち,本線虫の寄生を促進するものとして穀物のみから成る飼料の効果が確認されたので,実験室内で本線虫の感染鶏を作出するには12日齢の雛に幼虫形成後4カ月以内の虫卵を投与し,雛には虫卵の投与から15日目までは基礎飼料(しいな米,粟および稗を重量比で2:1:1の割合で混合した穀物のみよりなる飼料)を,以後は抗蠕虫薬の添加されていない市販の配合飼料を給与する方法(基礎飼料-配合飼料転換給与)を利用すればよいことが判明した。なお,雛1羽当り100~400個の鶏回虫幼虫形成卵を投与した場合,この飼育法を利用すれば投与虫卵数の10~74%,平均32%が成熟期に発育するため,これに起因する腸閉塞が起こり斃死することがある。したがって虫卵投与数を厳密に守る必要がある。 ○基礎飼料-配合飼料転換給与によって作出した感染鶏における鶏回虫の性質 寄生部位,排卵数および虫体の排泄  人工感染させた鶏回虫の性状として,幼若虫および成熟虫の寄生部位,排卵数の日内変動,パテント・ピリオド中の虫卵および虫体の排泄について観察した。  鶏の十二指腸~肛門上1cmまでの消化管を5等分して寄生部位について観察した場合,虫卵投与10~12日目の幼若虫は盲腸を除く消化管全域から回収された。虫体の腸管内の分布は中央部が最も多く,46%のものがこの部から回収され,最下部には極めて少数が見られたのみであった。また,成熟虫も同様の傾向であったが最下部からは回収されなかった。  排卵数の日内変動では排卵数が最低になるのは,寄生虫体数に関係なく午前5時であったが,最大になるのは寄生虫体数が多いほど遅延した。また,パテント・ピリオドにおける寄生虫体1匹当たりの総排卵数は寄生虫体数によって異なり,少数および多数の虫体が寄生した場合より,中等度の12匹が寄生した場合の方が多かった。しかしながら,排虫は寄生虫体数が多いほど遅延した。 ○各発育段階の虫体に対するパーベンダゾールの駆虫効果  作出した人工感染鶏を使用した応用実験の一例として各発育段階の鶏回虫に対する広域駆虫薬パーベンダゾールの効果を観察した。  虫卵投与後15および18日目の投薬では59.6%および69.1%しか駆虫されなかった。この時期が幼虫の脱皮時に相当することより,脱皮中の虫体に対しては本剤の効果が充分ではないことが判明した。なお,これ以外の時期の投薬では92~100%の高い駆虫効果が得られ,パーベンダゾールの効果は虫体の齢によって異なることが明らかになった。自然感染または一定した感染が得られない従来の方法で感染した鶏では,異なる発育段階の虫体に対する抗蠕虫薬の作用の差異の検出は困難であり,これを明確に出来たことは,今回の感染鶏作出法が抗蠕虫薬の効果判定に極めて有用であることを示している。}, title = {鶏回虫 Ascaridia galli 感染鶏の作出に関する研究 : 感染条件の検討と作出鶏の応用}, year = {} }