WEKO3
アイテム
狂犬病細胞培養不活化ワクチンに関する研究
https://az.repo.nii.ac.jp/records/3206
https://az.repo.nii.ac.jp/records/32069968e6be-f539-42f7-a758-f9cf065fb2b5
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
|
![]() |
|
|
![]() |
|
Item type | 学位論文 / Thesis or Dissertation(1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2013-01-29 | |||||||||
タイトル | ||||||||||
タイトル | 狂犬病細胞培養不活化ワクチンに関する研究 | |||||||||
タイトル | ||||||||||
タイトル | Studies on an inactivated cell culture vaccine against rabies | |||||||||
言語 | en | |||||||||
言語 | ||||||||||
言語 | jpn | |||||||||
資源タイプ | ||||||||||
資源タイプ | thesis | |||||||||
著者 |
石川, 義久
× 石川, 義久
× Ishikawa, Yoshihisa
|
|||||||||
抄録 | ||||||||||
内容記述タイプ | Abstract | |||||||||
内容記述 | 狂犬病は悲惨な神経症状と高い致命率を主徴とする人畜共通伝染病で,野生動物や一部の保毒動物が感染源となるため撲滅が極めて難しく,海外では今なお人や家畜に被害がみられている。わが国では幸い,長年の努力により1957年以来無病状態が確立されているが,近年愛玩動物の飼育と輸入が増加しつつあり,発生国からの本病侵入の恐れが慢性化しているため,これに備えて引き続き飼犬の予防注射が義務づけられている。 わが国における本病の予防には,長期間にわたり感染脳不活化ワクチンが利用され,これは1979年より部分精製ワクチンに改良されたが,免疫持続期間が短かいため6ヵ月毎に再注射され,含有脳物質による副作用の危惧は解消されなかった。 このため,著者は,脳物質を含まず,より安全でかつ免疫力価の高いワクチンの開発を意図して,細胞培養不活化ワクチンの検討を行い,ほぼその目的を達成することができた。 I. 培養細胞に順化したウイスル株の作出 狂犬病ウイルスはKissling(1958)が初めて細胞培養に成功して以来,数株の順化株が作出されたが,これらは,通常予め,動物脳や鶏胚での長期継代を必要とし,また利用できるウイルス株と細胞に制約があるため,一部の国を除き細胞培養ワクチンの開発が遅れていた。このため著者は,まず増殖性のよいウイルス株と継代細胞株の系を見い出すことにし,鶏胚細胞である程度増殖するHF-TC株とRCEH株を用い,維持の容易なVero細胞に37℃で長期培養する方法を採用した。この結果,継代初代では69日後に初めてCPEの出現とウイルス価の上昇が認められたため,これを10代まで継代したが,10^7.8 TCID_50/ml以上に達しなかった。更にウイルス増殖をはかるため,Vero細胞で4~5代継代後のウイルスをハムスター由来のBHK-21/cl 13,HmLuまたはCERの各継代細胞に,これらの維持しやすい32℃で20代まで連続継代したところ,HF-TC株のHmLu細胞継代系を除いて,15~20代継代後に10^8.3~10^8.5 TCID_50/mlの増殖が認められた。これらの不活化ワクチンの免疫力価は,精製脳ワクチンを上回ることが確認されたため,このうち増殖性がよく取扱いの容易なRCEH株とHmLu細胞の系を選び,継代21~23代で限界希釈によるクローニンクを行い,種ウイルス候補RC・HL株を作出した。 II. 細胞培養順化RC・HL株の諸性状 種ウイルスRC・HL株の生物学的性状を検討した。原株(RCEH)を対照に,各種動物由来培養細胞の宿主域を調べた結果,ニワトリ胚初代細胞(CEF)のほかウズラ(QE-1)およびハムスター(CER,BHK-21/cl 13,HmLu)由来継代細胞ではCPEを示して増殖したが,イヌ(MDCK),ウマ(EFD),およびブタ(MPK-IIIb)由来継代細胞では両株ともCPE出現とウイルス増殖がほとんどみられなかった。いっぽう,ブタ(ESK),ネコ(CRFK)およびサル(Vero)由来継代細胞では,原株はCPEを現わず増殖も低かったが,RC・HL株はCPEを示して増殖するようになり順化株の一つの特性とみなされた。 動物に対する病原性を検討するために成熟したマウス,モルモット,ウサギおよびイヌの脳内に10^8.0 TCID_50/mlのRC・HL株を注射した結果,順化株は全く病原性を示さなかったが,2日齢マウスおよび同日齢のハムスターでは,それぞれ10^7.7および10^5.2 LD_50/mlが測定され,これらに対し高い神経病原性を保持していた。 狂犬病ウイルス株間の抗原関係をみるため酵素抗体法を用いて交差中和試験を行った。RC・HL株,HF-TC株及びCVS株はそれぞれホモの抗血清との問でやゝ高く,ヘテロの間では低い抗体価が測定された。ヘテロのウイルスと抗血清の間ではRC・HL株とCVS株は互いにやゝ高く測定されHF-TC株はやゝ低く測定されたため,若干の抗原性の差異が示唆されたが,大差は認められなかった。この関係は,モルモットにおける受身免疫試験でも確認された。 RC・HL株のHmLu細胞における増殖性を検討したところ,37℃より32℃~34℃の方がウイルス収量が多く,かつ持続する傾向が示された。MOIは0.001~0.01より0.1~1.0と高いほどおおむね高いウイルス収量が得られた。また,感染価は4日目以降低下するが,免疫力価はむしろやゝ上昇する傾向を示した。 RC・HL株感染HmLu細胞の電顕像では,細胞質基質および細胞小器官の変性と小胞体内に蓄積した無数のウイルス粒子が確認された。 III. 精製および不活化法の検討 狂犬病ウイルスの培養には通常培養液中に血清の添加が必要であり,ワクチン中にこれが含有されて生体に異種抗原となるため,精製してできるだけ除去することが重要である。このため,大量培養に準ずる規模によりローラーボトル法で培養したHmLu細胞にRC・HL株を接種してウイルス原液を採取し,これをポリエチレングリコール(PEG)沈澱,限外濾過(UF)法,またはUF・超遠心併用法で部分精製と濃縮を行い,ウイルス回収率,除蛋白率および精製度を比較した。その結果,併用法は平均して高い精製度が得られたが,試験毎のばらつきが大きく実用には不適当であった。いっぽう,PEG法の除蛋白率(83.7%),精製度(3.26)はUF法の除蛋白率(46.7%),精製度(1.3)よりまさり,実用にはPEG法が最も適すると考えられた。 次にβ-ブロピオラクトン(BPL),ホルマリンおよびバイナリーエチレンイミン(BEI)によるウイルス不活化法を検討した。各不活化法のうちホルマリンに比べBEIとBPLでは,比較的短時間に不活化が終了した。約10^8.0 TCID_50/mlを示すPEG精製ウイルスを,これら3種の不活化剤で不活化し,免疫力価の安定性を検討した。低希釈免疫では,不活化直後および4℃8ヵ月の保存後も高い力価がえられたが,4℃保存材料の高希釈免疫ではBPL不活化ウイルスが最も安定していたため不活化剤はBPLが適当と考えられた。 そこで10%PEGによる部分精製ウイルスを0.0125%BPLで4℃48時間不活化し,さらに蛋白窒素(PN)量を100μg/ml以下に調整して30パッチのワクチンを試作し免疫力価を測定した結果,いずれも20倍希釈で70%以上の耐過率を示した。このうち4パッチを用い,4℃29ヵ月間の保存性を調べたが,力価の低下はわずかであった。 このように,PEGで部分精製と濃縮を行い,10^8.O TCID_50/ml以上の感染価を示すウイルス液をBPLで不活化してワクチンを調製することにより,精製脳ワクチンのレベルを上回る免疫力価が安定して得られることが確認された。 IV. 免疫法の試験 狂犬病ワクチンによる免疫動物では,中和抗体の産生が感染防御効果と密接に関係することが知られている。そこで前章の方法で試作したワクチンを18頭のイヌに1.0ml皮下注射し,それぞれ1ヵ月,3ヵ月,6ヵ月,および7ヵ月後に300LD_50のCVS株ウイルスで攻撃し抗体価と感染防御能の関係を検討した。その結果,ホモのRC・HL株に対しては約10倍,ヘテロのHF-TC株に対しては約4倍の抗体価を示すイヌで感染防御が成立し,以後主にHF-TC株に対する価を基準として有効免疫の持続期間を判定した。 まず,注射経路を比較するため,8頭ずつ2群のイヌ,および4頭ずつ2群のネコに試作ワクチンを1.0mlずつ皮下または筋肉内に注射して抗体価を測定すると,イヌでは2週後32~35倍,4週後18~22倍,ネコでは2週後で28倍,4週後16~21倍を示し,動物種および注射経路により産生抗体価に有意差(P<0.01)は認められなかった。 また,4~5頭ずつ5群のイヌにワクチンを2.0ml,1.0ml,0.5mlおよび1/2,1/4,1/8と希釈して1.0mlずつ皮下注射した。これらの動物には,2週後26~45倍,4週後20~34倍の抗体価が測定され,ワクチン希釈により抗体価が低下する群も認められたが,有意な差(P<0.01)ではなかったため,注射量は免疫の確実を期するため1.0mlとした。 いっぽう,36頭のイヌにワクチンを1.0ml1回皮下注射し,抗体の推移をみたところ,1ヵ月後29倍,3ヵ月後28倍,6ヵ月後9倍,12ヵ月後5倍を示し,1年後まで有効抗体価を保持していた。 次に,1.0mlの皮下注射により2回注射法の間隔と免疫持続の関係を検討した。12頭のイヌによる1ヵ月間隔2回注射群では,2回注射後抗体価は300倍に急上昇し以後徐々に下降したが,10ヵ月後でも84倍を保持していた。15頭のイヌによる6ヵ月間隔2回注射群でも同様に2回注射後368倍に上がり,18ヵ月後でも53倍を維持していた。さらに,29頭のイヌによる12ヵ月間隔2回注射群でも追加免疫の効果は明瞭で340倍を示し,18ヵ月後でも90倍を維持していた。これに対し,8頭のイヌによる24ヵ月間隔2回注射群では,2回目注射時の抗体価は陰性で,追加注射によるブースター効果はみられず,1回免疫と同様の抗体応答しか認められなかった。 以上の成績から,試作ワクチンの1.0ml1回注射法により有効抗体価が12ヵ月間持続し,最長12ヵ月毎の追加免疫により,有効な免疫持続がはかられることが確認された。 V. 臨床試験 試作ワクチンの接種反応と免疫持続期間を検討し,米国製(EおよびTワクチン)および西ドイツ製(Mワクチン)の外国製ワクチンと比較した。わが国の検定基準により,各ワクチンの蛋白窒素(PN)量と免疫力価を測定すると,Mワクチンはいずれも適合したが,Tワクチンは,PN量過多,EワクチンはPN量過多と免疫力価の不足のため不適合であった。 各ワクチンを指定された用法・用量に従って注射し,3日後に注射局所の反応を検査した。4頭のイヌおよび2頭のネコに試作ワクチンを1.0mlまたは2.0ml各頭2部位ずつに皮下注射した結果,1.0ml注射部位では,肉眼的にも組織学的にも接種反応は何ら認められなかったが,2.0ml注射部位ではイヌで3/8,ネコで1/4部位に浮腫と充血が認められた。しかし,これら反応は従来の精製脳ワクチンに比べ軽度であった。 いっぼう,外国製ワクチンでは,E,Tワクチンともに5頭のイヌを用い1ドース(1.0ml)を各頭1部位ずつの筋肉内に注射したところ,全注射部位に反応がみられなかったが,これに対しMワクチンでは5頭のイヌに1ドース(2,0ml)ずつ皮下注射すると,全注射部位に重度の腫脹,硬結,充出血および壊死が認められた。 次に,各ワクチンの1回注射による抗体価の推移を観察した結果,試作ワクチンでは22頭のイヌおよび15頭のネコで,いずれもおよそ12ヵ月間の持続が認められたが,4頭ずつのイヌにおけるEおよびTワクチンの免疫持続はおよそ9ヵ月であった。これに対し,同様に4頭ずつのイヌで調査したMワクチンによる免疫持続期間は12ヵ月以上と推定された。 都下N大学の実験動物施設で,20頭と21頭の2群のビーグル犬を用い,1.0ml1回皮下注射法により,2ロットの試作ワクチンの野外試験を行った。両群とも接種反応はまったく認められず注射3週後には30倍および32倍の平均中和抗体価が測定された。このうちの37頭で中和抗体の持続を観察したところ,室内試験と同様にほぼ12ヵ月の持続が確認された。 以上の成績から,新たに作出された細胞培養順化ウイルスRC・HL株はHmLu細胞でよく増殖し,これよりPEG精製とBPL不活化法により調製された不活化ワクチンは1.0mlの1年1回注射法で有効な免疫付与がなされることが明らかにされた。 |
|||||||||
Abstract | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | Rabies is one of the most tragic zoonoses, because its causative virus infects all mammals and causes a high mortality. In the countries where wildlife and/or asymptomatic carrier animals can be the source of infection, complete erradication of rabies is very difficult and it has still been prevalent among humans and various species of animals. Fortunately, there have been no outbreaks of rabies in Japan since 1957. However, there is yet the possibility that the disease may be brought into Japan from the infected countries. Under such circumstances, dogs have compulsorily been vaccinated by law in this country. The inactivated rabies vaccine that was prepared from the infected brains has been used for many years in Japan. This vaccine provoked an immunity lasting only about 6 months and rarely caused adverse effects including postvaccinal encephalomyelitis. At our laboratory, therefore, extensive studies were carried out to develop the safest and more efficacious vaccine. As a result, the author succeeded in the development of an inactivatd rabies vaccine fulfilled the above-mentioned requirements by the use of cultured cells. The results thus obtained are summarized as follows: I. The Establishment of a Cell Culture-adapted Strain of Rabies Virus In order to develop an efficacious vaccine against rabies, it is indispensable to find out a virus with a high yield and cell cultures highly susceptible to the virus. Accordingly, the RCEH and HF-TC strains of rabies virus, which are able to propagate in primary chicken embryo cell cultures, were cultivated for a long-term at 37℃ in Vero cell cultures. Both strains showed clear cytopathic effect (CPE) in Vero cells after cultivating for 69 days and increased in infectivity from 10^4.5 to 10^6.3-7.3 TCID_50/ml. Both strains were serially passaged 10 times in Vero cell cultures at 3-to 7-day intervals when CPE became discernible. The infectivity attained to a little over 10^70 TCID_50/ml, but did not reach 10^8.0 TCID_50/ml. Both strains, passaged in Vero cells 4 to 5 times, were further passaged in BHK-21/cl 13, HmLu or CER cell cultures at 32℃. They showed CPE in these cultures from the first generation and their infectivities inceased constantly from 10^6.5~7.5 to 10^8.3~8.5 TCID_50/ml after passaging 15-20 times, with the exception of HmLu cell culture-passaged HF-TC strain, infectivity of which did not exceed 10^8.0 TCID_50/ml. The inactivated vaccines, which were prepared from cell cultures infected with these strains, possessed high immunogenicities in parallel with their high infectivities. Taking constant high virus growth and readiness for vaccine production into consideration, the HmLu cell culture-passaged RCEFI strain was chosen as a candidate strain for vaccine seed virus. The strain was passaged by the limiting dilution method which was performed at passages 21 to 23, and thus the RC・HL strain was obtained. II. Biological Characteristics of the Cell Culture-adapted RC・HL Strain of Rabies Virus Biological characteristics of the RC・HL strain that was chosen as a candidate strain for vaccine seed virus were investigated. At first, the host cell range of the RC・HL strain was examined in various cell cultures and compared with that of the parent RCEH strain. Both strains well propagated in chicken (CEF), quail (QE-1) or hamster-derived cell cultures (CER, HmLu, BHK-21/cl 13). In contrast, both strains manifested little or no CPE in dog (MDCK) or equine (EFD) cell cultures. The RC・HL strain grew well showing clear CPI; in pig (ESK), monkey (Vero) or feline (CRFK) cell cultures, whereas the parent strain grew poorly exhibiting no CPE in these cultures. These differences in growth behavior in cell cultures between both strains were considered to be a useful biological marker. The RC・HL strain was non-pathogenic for adult animals of mice, guinea pigs, rabbits or dogs when inoculated intracerebrally with 10^8.0 TCID_50/ml. On the other hand, the strain retained neurovirulence for suckling mice and hamsters. The cross-neutralization test between RC・HL, CVS and HF-TC strains revealed that each virus was neutralized with respective homologous serum at the highest titer, whereas was neutralized with heterologous serum at a lower titer. There were no antigenic differences among these strains, and the antigenicity of the CVS strain was found to lie between the RC・HL and HF-TC strains. The passive immunization test performed in guinea pigs using each antiserum revealed a similar tendency to active immunization test. The growth of the RC・HL strain was investigated under different culture conditions. The strain attained and maintained a higher infective titer at 32-34℃ than at 37℃, and at a multiplicity of infection of 1.0-0.1 than at 0.01-0.001 at the 3rd day after inoculation. There was a tendency to increase its immunogenic potency when its peak infectivity began to drop at the 4th day and later. By electron microscopy, cultured HmLu cells infected with the RC・HL strain were observed to have degenerative changes of cell organelles and accumulations of numerous virions in cytoplasmic vacuoles. III. Purification and Inactivation of Rabies Virus The fluid of infected cultures in semi-large scale roller bottles was harvested and purified by either a sedimentation with polyethylene glycol (PEG), ultrafiltration (UF) or combined UF and ultracentrifugation method. Virus recovery rate(%), protein reduction rate (%) or purity was compared between the three methods. From the results obtained by 8-10 trials, the combined method seemed to be unpractical because its wide fluctuation in results despite the highest purity of resultant products. The PEG method seemed to be most adequate for the practical use because it was superior in protein reduction rate (83.7%) and purity (3.26) to those of the UF method. Partially purified material containing 10^8.0 TCID_50/ml of virus obtained by the PEG method was inactivated with β-propiolactone (BPL), formalin or binaryethyleneimine, and its immnogenic potency was determined. The immunogenic potencies determined immediately after inactivation were the highest in materials treated by either reagent. After 8 months storage at 4℃, the immunogenicity of BPL inactivated virus was most stable. Thirty batches of vaccines experimentally produced by purification with 10% PEG and inactivated with 0.0125% BPL were adjusted to the protein nitrogen content of less than 100μg/ml. These vaccines had a protection rate of more than 70% in all batches (30/30) when immunized with a 1:20 diluted sample. Four batches of these vaccines maintained almost the same level of immunogenic potency during storage of 36 months at 4℃, when judjed at 3- to 6-month intervals. From these results, the experimental vaccines were estimated to maintain their stable immunogenic potency when infected materials were purified and concentrated by the PEG method to more than 10^8.0 TCID_50/ml of virus, and then inactivated with BPL. IV. The Investigation of Administration Method Animals and man immunized prior to the exposure to rabies virus are usually resistant to infection if virus neutralizing (VN) antibodies are present in their sera. Then vaccinated dogs were investigated for their minimum effective VN antibody titer required for protection. Eighteen dogs were injected subcutaneously with 1.0 ml of experimental vaccine, and challenged 1,3,6 or 7 month later with 300 LD_50 of the CVS strain of rabies virus by the masseteric route. As a result, the minimun effective VN titer assayed with the RC・HL strain was 1:10, and that assayed with the HF-TC strain was approximately 1:4. By these methods using mainly the HF-TC strain, the duration of immunity was evaluated by clinical examinations. At first, two dog groups each consisted of 8 and 2 cat groups each consisted of 4 were injected subcutaneously or intramuscularly with 1.0ml of the vaccine. The geometric mean (GM) VN titers induced 2 weeks after vaccination were 1:32-1:35 in dogs, 1:25 in cats, and antibody titers induced 4 weeks after vaccination were 1:18-1:22 in dogs and 1:16-1:21 in cats. There was no statistically significant difference in VN titers between animal species or inoculation routes. Moreover 5 dog groups each consisted of 4-5 animals were injected subcutaneously with 2.0, 1.0, 1/2, 1/4, or 1/8 ml of the vaccine. As a result, although VN titers gradually declined as vaccine dilution was progressed, there were no significant differences in VN titers. On the other hand, in 36 dogs injected subcutaneously with 1.0 ml of the vaccine, VN titers were 1:29, 1:28, 1:9 and 1:5 at 1, 3, 6 and 12 months after the vaccination, respectively. Secondly, the effect of two repeated vaccinations were investigated. Twelve dogs were vaccinated twice at a 1-month interval. There was a rapid increase in titers after the 2nd inoculation. The peak titer of 1:300 gradually declined to 1:84 10 months after the 2nd inoculation. In 15 dogs vaccinated twice at a 6-month interval, titer increased rapidly one month after the 2nd inoculation, and titer of 1:53 was still maintained 18 months after the first inoculation. In 29 dogs vaccinated twice at a 12-month interval, a rapid antibody response was observed after the 2nd inoculation, and the peak titer of 1:340 was attained. The titer of 1:90 was maintained 18 months after the first vaccination. On the other hand, in 8 dogs vaccinated twice at a 24-month interval, none had detectable antibody 24 months after the first vaccination, nor had amnestic immune response after the 2nd vacccination. These results suggest that the duration of immunity induced by the experimetal vaccine might be 12 months, and that booster injection should be done once yearly. V. Clinical Examinations The adverse effects and duration of immunity induced by the experimental vaccine were compared with those of three imported vaccines, E- and T-vaccines produced in the U.S.A., and M-vaccine produced in West Germany. M-vaccine passed the Japanese Minimum Requrement for animal rabies vaccine, while T- and E-vaccines did not pass the protein nitrogen content test, and E-vaccine did not have immunogenic potency enough to pass the test. Dogs and cats were injected with each vaccine following its indication and sacrificed three days after injection to examine lesions at the injection site. Neither gross nor microscopic lesions were detected at the injection sites of any of 4 dogs and 2 cats injected subcutaneously with 1.0 ml of the experimental vaccine. At the 2-dose injection sites, edema and congestion were recognized at 3 of 8 sites in dogs and 1 of 4 sites in cats. However, these reactions were much slighter than those induced in animals by injecting the brain tissue vaccine. No noticeable lesions were observed in any of 4 dogs injected intramuscularly with 1.0 ml of the T- or E-vaccine. Dogs injected subcutaneously with onedose(2 ml) of the M-vaccine showed severe swelling and induration at the injection sites. Microscopically, congestion, hemorrhage, cell infiltration and necrosis were observed in the sites. The duration of immunity induced by vaccination of 1 dose of each of these vaccines was pursued up to 12 months. In 22 dogs and 15 cats injected with the experimetal vaccine, immunity was demonstrated for 12 months. The E- and T-vaccines provided animals with immunity lasting for 9 months, whereas the M-vaccine gave immunity lasting for more than 12 months. Field trials were conducted with 41 beagle dogs. Dogs were allocated to 2 groups each consisting of 20 and 21. A 1.0-m1 volume of vaccine from 2 lots was injected subcutaneously into each dog. There were no adverse effects in any of vaccinated dogs. The VN titers of 1:30 and 1:32 were detected 3 weeks after vaccination. And the level of immunity enough to protect dogs from infection was demonstrated 12 months after vaccination in all of the 37 dogs examined. On the basis of the above-mentioned experiments, it was concluded that the cell culture-adapted RC・HL strain of rabies virus propagated well in HmLu cell cultures, and that the experimental vaccines produced from infected cultures were much safer and more immunogenic for animals than vaccines prepared from the infected brains. The newly developed vaccine provided a solid immunity lasting for at least one year by injection of a 1.0-m1 volume. |
|||||||||
学位名 | ||||||||||
学位名 | 獣医学博士 | |||||||||
学位授与機関 | ||||||||||
学位授与機関名 | 麻布大学 | |||||||||
学位授与年月日 | ||||||||||
学位授与年月日 | 1990-03-07 | |||||||||
学位授与番号 | ||||||||||
学位授与番号 | 乙第283号 | |||||||||
著者版フラグ | ||||||||||
出版タイプ | AM | |||||||||
出版タイプResource | http://purl.org/coar/version/c_ab4af688f83e57aa |