ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文

Prediction of 24-h and 6-h Periods before Calving Using a Multimodal Tail-Attached Device Equipped with a Thermistor and 3-Axis Accelerometer through Supervised Machine Learning

https://az.repo.nii.ac.jp/records/2000304
https://az.repo.nii.ac.jp/records/2000304
5745ef20-5cc3-40da-ae6f-a474795e7d42
名前 / ファイル ライセンス アクション
animals-12-02095-v2.pdf animals-12-02095-v2.pdf (1.6 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2025-02-14
タイトル
タイトル Prediction of 24-h and 6-h Periods before Calving Using a Multimodal Tail-Attached Device Equipped with a Thermistor and 3-Axis Accelerometer through Supervised Machine Learning
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Higaki, Shogo

× Higaki, Shogo

en Higaki, Shogo

Search repository
Matsui, Yoshitaka

× Matsui, Yoshitaka

en Matsui, Yoshitaka

Search repository
Sasaki, Yosuke

× Sasaki, Yosuke

en Sasaki, Yosuke

Search repository
Takahashi, Keiko

× Takahashi, Keiko

en Takahashi, Keiko

Search repository
Honkawa, Kazuyuki

× Honkawa, Kazuyuki

en Honkawa, Kazuyuki

Search repository
Horii, Yoichiro

× Horii, Yoichiro

en Horii, Yoichiro

Search repository
Minamino, Tomoya

× Minamino, Tomoya

en Minamino, Tomoya

Search repository
Suda, Tomoko

× Suda, Tomoko

en Suda, Tomoko

Search repository
Yoshioka, Koji

× Yoshioka, Koji

en Yoshioka, Koji

Search repository
Abstract
内容記述タイプ Abstract
内容記述 In this study, we developed calving prediction models for 24-h and 6-h periods before calving using data on physiological (tail skin temperature) and behavioral (activity intensity, lying time, posture change, and tail raising) parameters obtained using a multimodal tail-attached device (tail sensor). The efficiencies of the models were validated under tethering (tie-stall) and untethering (free-stall and individual pen) conditions. Data were collected from 33 and 30 pregnant cattle under tethering and untethering conditions, respectively, from approximately 15 days before the expected calving date. Based on pre-calving changes, 40 features (8 physiological and 32 behavioral) were extracted from the sensor data, and one non-sensor-based feature (days to the expected calving date) was added to develop models using a support vector machine. Cross-validation showed that calving within the next 24 h under tethering and untethering conditions was predicted with a sensitivity of 97% and 93% and precision of 80% and 76%, respectively, while calving within the next 6 h was predicted with a sensitivity of 91% and 90% and precision of 88% and 90%, respectively. Calving prediction models based on the tail sensor data with supervised machine learning have the potential to achieve effective calving prediction, irrespective of the cattle housing conditions.
言語 en
書誌情報 Animals : an open access journal from MDPI

巻 12, 号 16, 発行日 2022-08-16
出版者
出版者 MDPI
DOI
識別子タイプ DOI
関連識別子 10.3390/ani12162095
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
査読
内容記述タイプ Other
内容記述 査読あり
戻る
0
views
See details
Views

Versions

Ver.1 2025-02-05 05:12:08.837350
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3