Osborne-Mendel ラットの尿細管間質障害の 発生機序に関する研究

麻布大学大学院歌医学研究科 歌医学専攻博士課程病理生物学 DV0503 馬場智成

Osborne-Mendel ラットの尿細管間質障害の

発生機序に関する研究

麻布大学大学院獣医学研究科 獣医学専攻 博士課程 基礎獣医学健態系 病理生物学 DV0503 馬場 智成 目次

 $\cdots \cdots 1$

緒言

第1章 Osborne-Mendel 系ラットにおける進行性腎障害の病理学的検索

小序	• • • • •	3
材料と方法	• • • • •	5
結果	••••1	.0
考察	••••1	.2
引用文献	$\cdots \cdots 1$.4
要旨	••••1	.7
図、表	$\cdots \cdots 1$.9

第2章 ACEi 投与による蛋白尿抑制時における尿細管間質の変化

小序	•	•	•	•	• 2	27
材料と方法	•	•	•	•	• 2	28
結果	•	•	•	•	• 3	30
考察	•	•	•	•	• ;	32
引用文献	•	•	•	•	• {	34
要旨	•	•	•	•	• 3	36
図、表	•	•	•	•	• ;	37

第3章 BSA 投与による蛋白質負荷下における尿細管間質障害

小序	••••44
材料と方法	•••••45
結果	•••••47
考察	••••49
引用文献	••••51
要旨	•••• 52
図、表	••••53
総括	••••60
謝辞	••••61
ち ち ち	• • • • • 69
和乂安百	02
英文要旨	••••68

緒言

多くの慢性腎疾患は原疾患の種類にかかわらず進行性に腎機能の低下をみることか ら、最終共通経路(final common pathway)と呼ぶべき病態があるものと想定されて いる^{17,24}。また、慢性糸球体疾患の予後が病理学的に糸球体障害より尿細管間質障害 (TII)の程度と強く相関することが明らかになり、注目されている⁷。

TII は、組織学的に尿細管の萎縮、間質への単核細胞浸潤、間質の線維化を包含し、 腎組織の退行性変化とともにマクロファージ(m φ)、T 細胞を主体とする浸潤細胞、尿 細管上皮細胞(TEC)、筋線維芽細胞の相互作用によって間質線維化が進行する。

この糸球体病変に伴う TII の原因として病理生物学的に重要な因子として、蛋白尿が 想定されている。従来、蛋白尿は糸球体の機能廃絶の結果として付随する尿細管が萎縮 し、周囲に二次的な炎症が引き起こされると考えられてきたが、近年では蛋白尿自体が TII の原因または悪化因子として腎不全進行を促進することが示唆されている²⁰。

蛋白尿の主成分はアルブミン(Alb)であるが、蛋白尿の TII の増悪因子は Alb 単独と いうよりは複数の因子が関連しており、その総合作用により TII が発現・進行すると考 えられている ²²。蛋白尿中に含まれるさまざまな因子が近位尿細管に取り込まれると、 細胞内の nuclear factor- κ B (NF- κ B)が活性化され、monocyte chemoattractant protein 1 (MCP-1)、normal T cell expressed and secreted (RANTES)などのケモカイ ンの産生・分泌が亢進し、単核細胞の浸潤・活性化を促進するというのが現在の一般的 な考え方である ^{29,30}。

慢性糸球体疾患の原因が明らかとなっていない現在、腎疾患治療は腎不全進行の抑制、 つまり TII の進展制御が腎機能保護を考えるうえで重要な治療戦略である。現在、TII の進展制御を目的とした治療のひとつとして、アンジオテンシン変換酵素阻害薬(ACEi) が知られている。ACEi は、様々な薬理作用が知られているが、腎ではアンジオテンシ ンII(AngII)による作用である輸出細動脈の収縮による糸球体内圧上昇とこれに続く蛋 白尿の発現、またメサンギウム細胞の収縮、増殖、基質の増加による糸球体の硬化を抑 制することが腎機能保護作用に関連していると考えられている。

Osborne-Mendel 系ラット(OM)は遺伝的に糸球体障害を発症する系統で、若齢より Alb を主体とした大量の蛋白尿を発症することが報告されている²⁷。また、ラットは多 くの系統で加齢に伴い慢性進行性腎症が起こることが知られているが¹²、OM は他のラ

ットよりも進行がかなり早く、進行すると慢性腎不全となることから、ヒトの難治性ネフローゼ症候群の慢性腎不全進行モデルとして期待されている。しかし、現在のところ 腎障害の全貌は明らかにされておらず、尿細管間質病変の病理発生に関する研究は行われていない²⁵。

本研究は、OM の糸球体病変に続く TII の進行メカニズムと、糸球体病変および尿細 管間質病変の進展と蛋白尿との関連を探求することを目的として、免疫組織化学的手法 および分子生物学的手法を用いて尿細管障害、間質への単核細胞浸潤の動態を観察した。 また、OM の TII の発生・進展には蛋白尿が関連していると仮定し、ACEi、ウシ血清 アルブミン(BSA)の投与により蛋白尿を軽減ないし増悪させ、TII の変化と蛋白尿の関 連について考察した。

第1章 OM における進行性腎障害の病理学的検索

小序

慢性糸球体疾患では、原疾患の種類にかかわらず、共通した病変として TII が観察される。また、慢性糸球体疾患の予後が病理学的に糸球体障害より TII の程度と強く相関 することが明らかになり¹⁷、 TII の抑制が腎機能保護にとって重要な治療戦略と考え られている。TII は、組織学的に尿細管の萎縮、間質への単核細胞浸潤、間質の線維化 を包含し、浸潤細胞、TEC の相互作用によって間質線維化が進行する。

間質線維化の進行において、中心的役割を果たす増殖因子として transforming growth factor- β (TGF- β)が知られている^{18,20}。TGF- β は TEC、メサンギウム細胞、線維芽細胞、浸潤した m ϕ などから分泌され、標的細胞の細胞外基質の合成促進^{17,18}、線維芽細胞および TEC の筋線維芽細胞への形質転換の誘導により間質の線維化が進行する¹⁷。また、間質線維化が進行すると毛細血管は萎縮し、TEC を虚血性に障害して 腎機能低下を引き起こすことが示唆されており¹⁷、TII の進行抑制を考える上で間質線 維化を誘導する TEC、浸潤細胞の相互作用の解明が重要と考えられる。

糸球体病変に伴う TII の原因として、病理生物学的に重要な因子として蛋白尿が注目 されている。従来、蛋白尿は糸球体の機能廃絶の結果として付随する尿細管が萎縮し、 周囲に二次的な炎症が引き起こされると考えられてきたが、近年では蛋白尿自体が TII の原因または悪化因子として腎不全進行を促進することが示唆されている²⁰。

OM は遺伝的に糸球体障害を発症する系統で、若齢より Alb を主体とした大量の蛋白 尿を発症し、他のラットよりも進行がかなり早く、進行すると慢性腎不全となることか ら、ヒトの難治性ネフローゼ症候群の慢性腎不全進行モデルとして期待されているが、 現在のところ腎障害の全貌は明らかにされておらず、尿細管間質病変の病理発生に関す る研究は行われていない。

そこで、本研究では OM の糸球体障害に続く TII の発現・進展メカニズムを探求す るために、TII の特徴的所見である間質への単核細胞浸潤、尿細管障害、間質線維化に ついて病理組織学的、免疫組織化学的に検索するとともに、分子生物学的手法を用いて 尿細管間質のサイトカイン・ケモカイン mRNA の発現を検索し、OM におけるこれら の相互関係について検討した。分子生物学的検索では、Alb、トランスフェリン、IgG

などの刺激により培養 TEC から発現することが知られている最も強力な単核細胞や樹 状細胞のケモカイン²⁹ である monocyte chemoatractant protein 1 (MCP-1)、蛋白尿を 伴う TII において近位尿細管から発現する m ϕ の走化生因子であるとともに、TEC の 障害マーカーとして知られる²⁸ osteopontin (OPN)の mRNA 発現について検索した。 また、mRNA 発現の検索には切片上の組織から特定の部位を切り出すことで組織特異 的な mRNA 発現の定性・定量が可能な Laser microdissection (LND)法を用いた。

材料と方法

<実験動物および飼育環境>

OM は静岡実験動物株式会社より譲渡を受け、本学生物科学総合研究所動物飼育室内 で飼育を開始した。これを兄妹または親子交配により自家繁殖して得られたクローズド コロニーのオスの5、7、10、13、15、20 週齢を各4匹、計24匹を実験に用いた。な お、尿検査、血清生化学検査結果は同週齢のメス(各週齢4匹、計24匹)と比較した。 動物は室温(21±1℃)、湿度(50~60%)、照明(8時点灯、20時消灯)に制御された動物飼 育室内で、ラット用プラスチックケージ内に収容し、巣材(サンフレーク、オリエンタ ル酵母、東京)を適宜供給した。動物には固形飼料(CE-2、日本クレア、東京)および水 道水を自由に採取させた。

<剖検>

OM はエーテル麻酔下で腹大動脈より採血し、安楽死させた。その後、直ちに両側の 腎臓を取り出し、短軸方向に 2 分割し、片側を 4%パラホルムアルデヒド(PFA)/ PBS で固定、片側をティシュー・テック O.C.T.コンパウンド(サクラファインテックジャパ ン株式会社、東京)で包埋後、直ちに液体窒素で凍結し、・80 度で保存して各検査用試料 とした。

<血清生化学検査>

血液は血清に分離後直ちに凍結保存し、神奈川県食品薬品安全センター秦野研究所に 依頼して、総蛋白質濃度(TP)、Alb 濃度、Alb/グロブリン比(A/G)、血中尿素窒素濃度 (BUN)、クレアチニン濃度(Cre)、総コレステロール濃度(Chol)を測定した。測定方法 は、TP はビウレット法、Alb はブロムクレゾールグリーン(BCG)法、BUN はウレアー ゼ・グルタミン酸脱水素酵素(GIDH)法、Cre は Jaffe 法、Chol はコレステロールオキ シダーゼ・N-(2-ヒドロキシ-3-スルホプロピル)-3,5・ジメトキシアニリン(HDAOS)法を 用いた。

<尿検査>

OM を代謝ケージ内で自由飲水させた状態で 24 時間蓄尿を行った。採取した尿は尿

量の計測後凍結保存し、神奈川県食品薬品安全センター秦野研究所に依頼して、TP、 Alb、Cre を測定した。測定方法は、TP はピロガロールレッド法、Alb は免疫比濁法、 Cre は Jaffe 法を用いた。

<尿 SDS-PAGE による蛋白尿分画の検討>

OM のオスの 5、7、10、13、15、20 週齢の 24 時間蓄尿を用いて、ドデシル硫酸ナ トリウム・ポリアクリルアミドゲル電気泳動(SDS-PAGE)を Laemmli 法に従い行った。 はじめに尿および血清サンプルを調整し、尿および血清 5 μ L、D.W.275 μ L、Tris-HCl + SDS10 μ L、グリセリン 100 μ L、10%SDS 50 μ L の総量 485 μ L 調整した。スタン ダードはプレステインド SDS-PAGE スタンダード(Broad)(BIO-RAD Laboratories)を 使用した。血清は尿との比較のために用いた。泳動バッファーはプレミックスバッファ -10×トリス/グリシン/SDS(BIO-RAD Laboratories)を使用し、20mA/ ゲル、150V、 90 分の通電条件で泳動した。その後、ゲルはクマシーブリリアントブルー(CBB) (CBB: 2.5g、メタノール: 500mL、酢酸 1: 100mL、D.W.: 1000mL)で 2 時間染色し、その後 脱色(メタノール: 300mL、酢酸: 70mL、D.W.: 1000mL)した。

<光学顕微鏡的検索>

腎臓の4%パラホルムアルデヒド(PFA)/PBS 固定材料を、常法に従い3µmのパラフ イン切片を作製し、Hematoxylin・Eosin (HE)染色、Periodic acid・Shiff (PAS)染色を施 し病理組織学的に観察した。また糸球体、尿細管間質の病変について、Sommez²³らの 方法に従い半定量的解析を行った。糸球体は、1切片中のすべての糸球体(167±6.5)を 検索し、糸球体係蹄とボーマン嚢壁の癒着、メサンギウム基質の増生および血管係蹄の 消失を糸球体硬化として、0:硬化性病変なし、2:20%の分節性硬化、5:20-50%の分節 性硬化、10:完全な硬化の4段階で評価し、平均値をその個体のスコアとして週齢ごと に平均±標準誤差で表した。尿細管間質の病変は、腎皮質を200倍率下で無作為に30 視野選択し、単核細胞浸潤、尿細管の萎縮および間質線維化について観察した。炎症細 胞浸潤は0:変化なし、1:限局性集簇巣、2:多巣状性集簇巣、3:100倍率下で観察さ れるびまん性細胞浸潤の4段階で、尿細管の萎縮および間質線維化については0:変化 なし、2:わずかな限局性間質線維化、5:尿細管萎縮を伴う限局性間質線維化、10:100 倍率下での広範な間質線維化と顕著な尿細管萎縮の4段階で評価し、平均値をその個体

のスコアとして週齢ごとに平均±標準誤差で表した。

<免疫組織化学的検索>

間質に浸潤した単核細胞を検索するために、ED·1(m o)、CD3(T 細胞)、CD45RA(B 細胞)の免疫染色を行った。また、単核細胞浸潤と尿細管障害との関連について検索す るために、møを誘導するサイトカインであり、TEC の障害マーカーとしても知られ る OPN の免疫染色を行った。間質線維化は、線維化の際に線維芽細胞から形質転換す る筋線維芽細胞を検索するために、α-smooth muscle actin (α-SMA)の免疫染色を行 った。切片は脱パラフィン後、0.3%過酸化水素加メタノールに 20 分間反応させ、内因 性ペルオキシダーゼを阻止後、それぞれ以下の処理を行った。ED-1の発現の観察には、 0.1%トリプシンを 37℃30 分反応させて抗原賦活化処理を行い Mouse anti-rat CD68 (ED-1; Cosmobio, Tokyo,; 100 倍に希釈)を 4℃20 時間反応させた。CD3 の発現の観察 には抗原賦活処理として、クエン酸緩衝液(pH6.0)中で 90℃、20 分、2 回マイクロウェ ーブ処理を行った。一次抗体は Mouse anti-rat CD3 (G4.18; Pharmingen, San Diego, CA; 50 倍に希釈)を用い、4℃、20 時間反応させた。CD45RA の発現の観察には一次抗 体は Mouse anti rat CD45RA (OX-33; Serotec, Oxford; 100 倍に希釈)を 4℃、20 時間 反応させた。OPN の発現の観察には、脱パラフィン後、0.3%過酸化水素加メタノール に 20 分間反応させ、内因性ペルオキシダーゼを阻止し、抗原賦活処理として、クエン 酸緩衝液(pH6.0)中で 90℃、20 分、2 回マイクロウェーブ処理を行った。 α-SMA は前 処理を行わず、それぞれの一次抗体である anti-rat osteopontin rabbit IgG (IBL、群馬; 200 倍に希釈)、Mouse anti-human smooth muscle actin(1A4; Dako, Glosstrud, Denmark; 50 倍に希釈)を 4℃、20 時間反応させた。それぞれの免疫染色に対して、二 次抗体にアミノ酸ポリマーを使用しているシンプルステインラット MAX-PO (M)キッ トまたはシンプルステインウサギ MAX-PO (R)キット(ニチレイ、東京)を用い、DAB による発色後、ヘマトキシリンで対比染色を行った。標本の観察は 400 倍率下で糸球 体、血管を除く皮質領域 30 視野について行い、ED-1、CD3、CD45RA、α·SMA につ いては陽性細胞数を、OPN については陽性細胞を含む尿細管数を計測した。

<LMD 法によるトータル RNA の抽出とリアルタイム PRC による サイトカイン・ケモカイン mRNA の発現量の検索>

TII の発現・進展と尿細管間質領域におけるサイトカイン発現の関連について検討す るために、Sakurada²¹らの方法に従い LMD 法により、無作為に選択した糸球体およ び腎皮質の尿細管間質領域を抽出・回収し、MCP-1mRNA、OPNmRNAの発現量、発 現部位を検索した(Figure 1)。切片は-80℃で保存した凍結標本をクリオスタットで 5µ mに薄切し、ポリエチレンナフトール(PEN)フィルムを貼り付けたスライドに組織を貼 付し、-20℃の冷凍庫内で 70%エタノールに 15 秒間固定し、DEPC 水で 2 回洗浄後、 0.05%トルイジン青染色液で15秒間染色し、2回 DEPC 処理水で染色液を洗い流し、 切片を十分に乾燥した。作製した切片は LMD 装置(Leica Laser Microdissection System; Leica Microsystems)を用いて UV レーザーで焼き切り、RLT バッファー (RNeasy Micro Kit, Qiagen, UK)を入れたチューブのキャップ部分に落とした。切片は 糸球体と尿細管間質領域を分けて採取し、それぞれの mRNA 発現を検索した。糸球体 は1チューブあたり 50 個回収した。尿細管間質領域は、糸球体を切り抜いた部位を1 辺 400 µm の正方形に焼き切り、1 チューブあたり 25 枚回収した。その際、小葉間動 脈、明らかな単核細胞の集簇巣を含む領域は除外した。組織の回収後は RNeasy Micro Kit のプロトコルに従いトータル RNA を抽出した。その際、RNase Free DNase set (Qiagen, UK)を用いて染色体 DNA を除去した。抽出した mRNA を定量するために、 Sensiscript RT kit (Qiagen, UK)を用いて、プロトコルに従い cDNA を作製した。その 際、プライマーは Oligo (dT)12-18 (Promega, USA)、ribonuclease インヒビターは RNasin (Promega)を用いた。real-time PCR には Applied Biosystems 7500 real-time PCR system (Applied Biosystems, USA)を用いた。MCP-1、OPNのTaqMan プライ マー、プローブセットは TaqMan Gene Expression Assays (Applied Biosystems)のも のを用いた。また内因性コントロールとして用いた glyceraldehyde-3-phosphatase dehydrogenase (GAPDH)のプライマー、プローブは TaqMan Rodent GAPDH Control Reagents (Applied Biosystems)を用いた。PCR mixture は D. W.、TarMan のプライ マー、プローブセット、TaqMan Universal PCR Master Mix (Applied Biosystems)、 cDNA で構成された。すべてのサンプルは再現性を高めるために同一アッセイ内で2 回ずつ計測し、その平均値をサンプルの値とした。得られたデータは GAPDH で補正 し、Sequence Detection System Software (Applied Biosystems)を用いて CT method により定量解析した。

<統計学的処理>

統計学的処理は StatView Statistical Analysis Software を用いて行った。血清生化 学検査値、尿検査値の雌雄間の比較は Unpaired t-test を行い、週齢間の比較は分散分 析により有意性の認められたものについて Student-Newman-Keuls test を行った。 mRNA 発現量については Kruskal Wallis H-test で有意性の認められたものについて Mann-Whitney U-test を行った。その他、半定量解析結果、免疫染色の抗体陽性細胞 数、尿細管数については分散分析を行い、有意性の認められたものについては Dunnett's test を行い5 週齢の値と比較した。

結果

<血清生化学および尿検査>

血清中 TP 値に週齢間で大きな変化は認められなかったが、10 週齢以降メスよりも 低い値であった(P< 0.01)。Alb 値は 7 週齢から顕著に低下し、雌雄間に有意差が認めら れた。Cre 値は 15 週齢で有意に上昇し、20 週齢で雌雄間に有意差が認められた(P< 0.01)。 また、Chol 値は 10 週齢より加齢性に増加し、雌雄間に有意差を認められた(P< 0.01) (Table 1)。

24時間蓄尿による尿検査では、TP、Albは5週齢からメスよりも高く、その後加齢性に増加した。また、TP、Albは15週齢以降顕著に増加し、TPは20週齢でメスの約7倍高い値を示した(Table 1)。

<尿 SDS-PAGE による蛋白尿分画の検討>

5 週齢から Alb の分子量と一致したバンドが認められた。10 週齢でバンドは明らか に太くなり、Alb よりも高分子のバンドが認められた。その後これらのバンドは加齢性 に太くなった (Figure 2)。

<糸球体および尿細管、尿細管間質の組織学的変化>

糸球体は 5 週齢より足細胞の細胞質内に硝子滴の沈着が認められた(Figure 3-a、矢 印)。また、ボーマン嚢上皮細胞と血管係蹄との癒着(Figure 3-b、矢印)、糸球体の分節 性硬化(Figure 3-c、矢印)といった硬化性病変は 7 週齢から観察された。半定量解析の結 果では、13 週齢以降で 5 週齢の糸球体よりも有意に硬化性病変は増加した(P< 0.01)。 尿細管では 5 週齢で TEC の細胞質内に硝子滴の沈着を認めた(Figure 4-a、矢印)。7 週 齢以降、尿細管内腔やボーマン嚢腔内に蛋白液の貯留や(Figure 4-c)、拡張した尿細管 を認め、13 週齢頃には大小の硝子滴が大量に沈着して TEC が膨化する像や(Figure 4-b)、 空胞変性などの重度の病変が増加した。間質には 5 週齢から単核細胞が確認されたが、 著明な細胞浸潤は 10 週齢より観察され、その後細胞浸潤の程度は顕著に増加した (Figure 4-e)。また、間質では 10 週齢頃から結合組織の増生を認め、間質線維化は 15 週齢頃から 5 週齢と比べて有意に進行した(Figure 4-f)。これらの尿細管障害および単 核細胞浸潤、間質線維化は 20 週齢で瀰漫性に観察された(Figure 4-d)。

<TII 発現・進展の免疫組織化学的検索>

TII で観察される尿細管障害、間質への単核細胞浸潤、間質線維化について、OPN、 ED-1、CD3、CD45RA、 α -SMA の免疫組織化学的検索を行った。尿細管は形態的な 変化に先行して 10 週齢より OPN 陽性の尿細管が観察され(Figure 5-a)、13 週齢では OPN 陽性の尿細管数は顕著に増加した(Figure 5-b, c)。また、糸球体では肥大したボー マン嚢上皮細胞が OPN 陽性を示した(Figure 5-b 挿入図)。間質には検索した 5 週齢か ら m ϕ 、T 細胞、B 細胞のすべてが散在性に浸潤していた(Figure 6)。浸潤細胞の主体 は T 細胞で、10 週齢以降顕著に増加した(Figure 6-b)。間質における α -SMA 陽性の筋 線維芽細胞は 13 週齢頃から拡張した尿細管やボーマン嚢周囲に観察され(Figure 7-b)、 20 週齢で 5 週齢と比べて有意に増加した(P< 0.01) (Figure 7-c)。

<糸球体および尿細管間質領域における OPNmRNA、MCP-1mRNA の発現>

TEC 障害と間質に浸潤した単核細胞の関連を検索するために、球体および尿細管間 質領域における OPNmRNA、MCP-1mRNA の発現量の定量解析を行った。尿細管間 質では 5 週齢より OPNmRNA の発現が認められ、13 週齢で 5 週齢と比べて有意に増 加した(P< 0.05) (Figure 8-a)。MCP-1mRNA は 10 週齢から発現を認め、13 週齢で 5 週齢と比べて有意に増加した(P< 0.05) (Figure 8-b)。糸球体では 7 週齢から OPNmRNA がわずかに発現していたが、13 週齢以降減少したが有意差は認められなか った。また、観察期間中 MCP-1mRNA の発現は認められなかった(Figure 9)。

考察

OM は観察を開始した 5 週齢で蛋白尿を発症していた。そして、光学顕微鏡による観察の結果、OM は 5 週齢から糸球体の足細胞の細胞質内、TEC の細胞質内に硝子滴の 沈着が認められた。間質には 5 週齢から T 細胞を主体とした単核細胞が浸潤していた。

糸球体の足細胞の硝子滴沈着は、血管係蹄から大量の蛋白質が通過していることを示 すと考えられている¹⁹。OM は尿検査値や24 時間蓄尿のSDS-PAGE の結果から、こ の時期にすでに糸球体の濾過機能に異常が起きていることが示唆された。また、TEC においても5週齢から細胞質内に硝子滴が認められ、糸球体から漏出した多量の蛋白質 の再吸収が行われていることが示唆された。

糸球体から漏出した蛋白質は TEC のエンドサイトーシスにより再吸収され、ライソ ゾーム内で分解される[®]。そして過剰な蛋白質の取り込みは TEC の NF・κ B 経路は活 性化して、様々なサイトカインが分泌される ¹。OM は 5 週齢で尿細管間質領域に OPNmRNAの発現を認め、10週齢でTEC内のOPNが免疫組織化学的に観察された。 OMのTECにおける OPN 発現はTECの形質転換を意味しており、これは硝子滴の存 在から尿蛋白質の過剰な再吸収によることが示唆された。OPN は TEC の形質転換を表 す障害マーカーであると同時に、mφを誘導するサイトカインとしても知られている²²。 また、Tian²⁶らは TEC に発現する OPN が初期の mφ浸潤に重要な役割を果たしてい ると報告しており、OM にみられた5週齢からの単核細胞の浸潤には、活性化した TEC からの OPN 発現が関連している可能性が考えられた。OPN は NF・к B 経路を活性化 することが報告されており ¹⁵、NF κ B の活性化は、MCP・1 などのケモカインを発現 させる ¹。OM においても MCP-1mRNA の発現は OPNmRNA 発現の後に認められて おり、OPN が MCP-1 の発現を誘導している可能性が考えられた。また、MCP-1 は TEC のほかに活性化した m o からの発現が知られているため¹、OM における MCP-1 発現 は TEC と m o の両方から発現し、更なる単核細胞浸潤を誘導していると考えられた。 TEC からは OPN や MCP-1 のほかに、OPN の発現との関連が報告されている interleukin 1 (IL-1)や腫瘍壊死因子(TNF-α)¹、また主要組織適合抗原(MHC-II)³など が発現することが in vitro の実験によって示されており、これらも単核細胞浸潤に関連 していることが推察された。

OM の進行性腎障害は、多くのラットにみられる自然発症性進行性腎症(CPN)の病態

と類似していた¹¹。CPN では糸球体の硬化性病変の増加に伴って間質の線維化が進行 するが、糸球体に硬化性の病変が進行する以前に炎症反応やメサンギウム細胞の増殖は 観察されない。また、CPN では Alb を主体とする蛋白尿の増加や血漿成分と類似した 蛋白質の漏出が観察され、血液生化学的に Alb の低下と Chol の顕著な増加が観察され る ⁵。そして、間質線維化の進展した終末腎の病理像と一致して BUN が増加する ⁶。 CPN の発現は TEC による糸球体から漏出した Alb 再吸収過程で起こることが想定さ れている ¹⁰。CPN では尿中への Alb の漏出は生存期間中に摂取される蛋白質の種類や 量に関連することや¹¹、単にラットの蛋白質代謝の低下による代謝加齢性の変化によっ て起こると考えられている ⁴。また、CPN は一般的に TII の発現・進展は 12 ヶ月齢頃 から観察されるため²、OM の TII を CPN と同一病変と断定することはできないが、 OM は高カロリー食の摂取により肥満を誘発することが報告されており、遺伝的な代謝 異常が蛋白尿の発現やとその後の腎障害に関連しているのかもしれない。

結論としては、今回の OM の進行性腎障害の経時的な観察によって、OM の TII の 発症・進展には、蛋白尿による TEC の刺激が関連している可能性が考えられた。

参考文献

- Abbate M, Remuzzi G: Proteinuria as a mediator of tubulointerstitial injury. Kidney Blood Press Res 22: 37-46, 1999
- 2 Abrass CK: The nature of chronic progressive nephropathy in aging rats. Adv Ren Replace Ther 7: 4-10, 2000
- 3 Banu N, Mozes MM, Kopp JB, Ziyadeh FN, Meyers CM: Regulation of inducible class II MHC, costimulatory molecules, and cytokine expression in TGF-beta1 knockout renal epithelial cells: effect of exogenous TGF-beta1. Exp Nephrol 10: 320-331, 2002
- 4 Baylis C: Age-dependent glomerular damage in the rat. Dissociation between glomerular injury and both glomerular hypertension and hypertrophy. Male gender as a primary risk factor. J Clin Invest 94: 1823-1829, 1994
- 5 Bolton WK, Benton FR, Maclay JG, Sturgill BC: Spontaneous glomerular sclerosis in aging Sprague-Dawley rats. I. Lesions associated with mesangial IgM deposits. Am J Pathol 85: 277-302, 1976
- 6 Coleman GL, Barthold W, Osbaldiston GW, Foster SJ, Jonas AM: Pathological changes during aging in barrier-reared Fischer 344 male rats. J Gerontol 32: 258-278, 1977
- 7 D'Amico G: Tubulointerstitium as predictor of progression of glomerular diseases.
 Nephron 83: 289-295, 1999
- 8 Eddy AA: Interstitial nephritis induced by protein-overload proteinuria. Am J Pathol
 135: 719-733, 1989
- 9 Eddy AA: Proteinuria and interstitial injury. Nephrol Dial Transplant 19: 277-281, 2004
- 10 Eppel GA, Osicka TM, Pratt LM, Jablonski P, Howden B, Glasgow EF, Comper WD: The return of glomerular filtered albumin to the rat renal vein-the albumin retrieval pathway. Ren Fail 23: 347-363, 2001
- 11 Gordon: A contemporary overview of chronic progressive nephropathy in the laboratory rat, and its significance for human risk assessment. Toxicol Pathol 32: 171-180, 2004
- 12 Hard GC, Khan KN: A contemporary overview of chronic progressive nephropathy in the laboratory rat, and its significance for human risk assessment. Toxicol Pathol 32: 171-180, 2004

- 13 Kelley VR, Singer GG: The antigen presentation function of renal tubular epithelial cells. Exp Nephrol 1: 102-111, 1993
- 14 Kriz W, Hartmann I, Hosser H, Hahnel B, Kranzlin B, Provoost A, Gretz N: Tracer studies in the rat demonstrate misdirected filtration and peritubular filtrate spreading in nephrons with segmental glomerulosclerosis. J Am Soc Nephrol 12: 496-506, 2001
- 15 Lorenzen J, Shah R, Biser A, Staicu SA, Niranjan T, Garcia AM, Gruenwald A, Thomas DB, Shatat IF, Supe K, Woroniecki RP, Susztak K: The role of osteopontin in the development of albuminuria. J Am Soc Nephrol 19: 884-890, 2008
- 16 Matsuo S, Morita Y, Maruyama S, Manchang L, Yuzawa Y: Proteinuria and tubulointerstitial injury: the causative factors for the progression of renal diseases. Contrib Nephrol 139: 20-31, 2003
- 17 Nangaku M: Hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. Nephron Exp Nephrol **98**: e8-12, 2004
- 18 Okada H, Strutz F, Danoff TM, Kalluri R, Neilson EG: Possible mechanisms of renal fibrosis. Contrib Nephrol 118: 147-154, 1996
- 19 Peter CP, Burek JD, van Zwieten MJ: Spontaneous nephropathies in rats. Toxicol Pathol 14: 91-100, 1986
- 20 Remuzzi G, Bertani T: Pathophysiology of progressive nephropathies. N Engl J Med 339: 1448-1456, 1998
- 21 Sakurada Y, Shirota M, Inoue K, Uchida N, Shirota K: New approach to in situ quantification of ovarian gene expression in rat using a laser microdissection technique: relationship between follicle types and regulation of inhibin alpha and cytochrome P450aromatase genes in the rat ovary. Histochem Cell Biol 126: 735-741, 2006
- 22 Segerer S, Nelson PJ, Schlondorff D: Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol 11: 152-176, 2000
- 23 Sonmez A, Yilmaz MI, Korkmaz A, Topal T, Caglar K, Kaya A, Eyileten T, Yenicesu M, Oguz Y, Basal S, Ipcioglu OM, Vural A: Hyperbaric oxygen treatment augments the

efficacy of cilazapril and simvastatin regimens in an experimental nephrotic syndrome model. Clin Exp Nephrol **12**: 110-118, 2008

- 24 Taal MW, Omer SA, Nadim MK, Mackenzie HS: Cellular and molecular mediators in common pathway mechanisms of chronic renal disease progression. Curr Opin Nephrol Hypertens 9: 323-331, 2000
- 25 Tagami H, Urushidani, Y., Nara, Y., Mano, M., Horie, R., Iemori, Y. The renal lesions in spontaneous hyperproteinuria rat (OM/N). 74th Japanese society of veterinary pathology 1986;416-417
- 26 Tian S, Ding G, Jia R, Chu G: Tubulointerstitial macrophage accumulation is regulated by sequentially expressed osteopontin and macrophage colony-stimulating factor: implication for the role of atorvastatin. Mediators Inflamm **2006**: 12919, 2006
- 27 Urushidani Y, Yonematsu, T., Nara, Y., Iemori, Y. The effect of corticosteroidal therapy in spontaneous proteinuria rat (OM/N). 75th Japanese society of pathology 1986;445-446
- 28 van Timmeren MM, Bakker SJ, Vaidya VS, Bailly V, Schuurs TA, Damman J, Stegeman CA, Bonventre JV, van Goor H: Tubular kidney injury molecule-1 in protein-overload nephropathy. Am J Physiol Renal Physiol 291: F456-464, 2006
- 29 Wang Y, Chen J, Chen L, Tay YC, Rangan GK, Harris DC: Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. J Am Soc Nephrol 8: 1537-1545, 1997
- 30 Wang Y, Rangan GK, Tay YC, Wang Y, Harris DC: Induction of monocyte chemoattractant protein-1 by albumin is mediated by nuclear factor kappaB in proximal tubule cells. J Am Soc Nephrol 10: 1204-1213, 1999

Osborne-Mendel 系ラット(OM)は、若齢より大量の蛋白尿を伴う糸球体障害を発症 し、他のラットに認める自然発症性慢性腎症に比べて進行がかなり早く、進行すると慢 性腎不全となることから、ヒトのネフローゼ症候群の慢性腎不全進行モデルとして期待 されているが、現在のところ尿細管間質病変の病理発生に関する研究は行われていない。

そこで、OMの糸球体病変に続く尿細管間質障害(TII)の進行メカニズムと、糸球体病 変および尿細管間質病変の進展と蛋白尿との関連を探求することを目的とし、OMの進 行性腎障害の病理学的検索を行った。

OM の糸球体病変および尿細管間質病変は、進行の早いオスの5週齢から20週齢 を 用いて病理学的に検索した。

24 時間蓄尿による尿検査では、総蛋白質量(TP)は 10 週齢以降、同週齢のメスよりも 有意に上昇した。尿の SDS-PAGE では、5 週齢からアルブミン(Alb)の分子量と一致し たバンドを認め、10 週齡でバンドは明らかに太くなり、また Alb よりも高分子量の蛋 白質のバンドを形成し、その後これらのバンドは加齢性に太さを増した。血清クレアチ ニン(Cre)値は 20 週齢で雌雄間に有意差を認めた。組織学的に、糸球体は 5 週齢から足 細胞の細胞質内に硝子滴の沈着が認められた。また、ボーマン嚢と血管係蹄との癒着、 糸球体硬化といった硬化性病変は7週齢頃から観察され、その後加齢性に増加した。な お、糸球体に炎症反応は認められなかった。 尿細管間質では 5 週齢から TEC の細胞 質内に硝子滴が認められ、13週齢で大小の硝子滴が大量に沈着して TEC が膨化するほ か、空胞変性などの重度の病変が散見された。間質には5週齢から単核細胞が確認され たが、著明な細胞浸潤は、10 週齢より観察された。その後、これらの病変は間質の線 維化を伴いながら加齢性に進展し、20 週齢でびまん性に病変を形成した。免疫組織化 学的に検索したところ、尿細管は形態学的な変化に先行して 10 週齢よりマクロファー ジ(mφ)の誘導因子であるとともに、TEC の障害マーカーとして知られる osteopontin(OPN)に陽性を示し、13 週齢で OPN 陽性の尿細管数は有意に増加した。 また、糸球体では肥厚したボーマン嚢上皮細胞が陽性を示したが、足細胞、メサンギウ ム細胞は陰性であった。浸潤細胞は5週齢から mφ、T細胞、B細胞のすべてが散在性 に浸潤しており、浸潤した細胞の主体は T 細胞で、10 週齢以降顕著に増加した。また、 間質線維化の際に線維芽細胞から形質転換する筋線維芽細胞について、α-smooth

muscle actin (α -SMA)の抗体を用いて検索したところ、陽性細胞は 13 週齢から拡張し た尿細管、ボーマン嚢周囲に認められた。次に、TEC 障害と間質に浸潤した単核細胞 の関連を検索するために、最も強力な単核細胞のケモカインである monocyte chemoattractant protein 1 (MCP-1)と、m ϕ を誘導するサイトカインである OPN につ いて、Laser microdissection 法を用いて切片から尿細管間質領域のみを採取し、リア ルタイム PRC により OPN、MCP-1 の mRNA 発現の定量解析を行ったところ、 OPNmRNA は 5 週齢、MCP-1mRNA は 10 週齢から発現を認め、これらは加齢性に増 加した。

以上の結果をまとめると、OM は観察を開始した 5 週齢で蛋白尿を発症しており、間 質には T 細胞を主体とした単核細胞の浸潤が起こっていることが確認された。尿細管 間質領域ではこれらの単核細胞を誘導する OPNmRNA が 5 週齢で発現しており、明ら かに細胞浸潤が増加した 10 週齢では OPN 陽性 TEC を認め、さらに MCP-1mRNA も 発現していた。TEC における OPN 発現は TEC の形質転換を意味し、これは硝子滴の 存在から尿蛋白質の過剰な再吸収によることが示唆された。形質転換した TEC からは OPN や MCP-1 のほかに、OPN の発現との関連が報告されている interleukin 1 (IL-1) や腫瘍壊死因子(TNF- α)、また主要組織適合抗原(MHC-II)などが発現することが in vitro の実験によって示されており、これらも単核細胞浸潤に関連していることが推察 された。以上のことより、OM の TII の発症・進展には、蛋白尿による TEC の刺激が 関連している可能性が示唆された。

Figure 1. Laser microdissection (LMD)法による糸球体、尿細管間質領域の回収

PENフィルムを貼り付けたスライドを用いて5μmの凍結切片を作製し、0.05%トルイジン青染色液で染色後、 LMD装置(Leica Laser Microdissection System; Leica Microsystems)のUVレーザーで焼き切り、糸球体と 尿細管間質領域を分けて回収し、リアルタイムPCRによってそれぞれのmRNAの発現量を定量した。 切片は糸球体と尿細管間質領域を分けて採取し、それぞれのmRNA発現を検索した。 糸球体は1チューブあたり50個、尿細管間質領域は、糸球体を切り抜いた部位を1辺400μmの正方形に 焼き切り、1チューブあたり25枚回収した。

5	5w		7w		10w		15w	_	20w	
Serum										
TP (g/dL)	6.11±0.07	† †	6.11 ± 0.07		6.1 ± 0.06	† †	5.87 ± 0.06	† †	6.21 ± 0.08	**
albumin (g/dL)	3.8 ± 0.03		4.0 ± 0.05	* †	3.61 ± 0.07	** † †	2.97±0.06	** † †	2.86 ± 0.03	† †
A/G (%)	2.17±0.04		1.9 ± 0.04	** † †	1.47 ± 0.08	** † †	1.01 ± 0.04	** † †	0.86 ± 0.02	* † †
BUN (mg/dL)	15.57 ± 1.31		16.43 ± 0.75		20.57 ± 0.95		29.71±1.67	† †	60.43±7.74	** † †
creatinine (mg/dL)	0.63 ± 0.02		0.71 ± 0.01		0.74±0.02		0.89 ± 0.04	*	1.31 ± 0.09	** † †
chol (mg/dL)	111.43 ± 2.0		115.14 ± 1.67		184.86 ± 20.66	† †	327.86 ± 23.3	** † †	541.57±46.12	** † †
Urine										
TP (mg/24h)	3.94 ± 1.36		18.57 ± 6.1	t	95.6 ± 25.71	† †	183.21 ± 32.48	* † †	285.64 ± 48.56	* † †
albumin (μ g/24h)	0.2±0.05		0.51 ± 0.16	Ť	1.86 ± 0.46	t	3.85 ± 0.69	* † †	6.09±1.02	* † †
creatinine (mg/24h)	2.9±0.23		5.8 ± 0.53	*ak †	8.78±0.75	** †	12.01 ± 0.83	** † †	12.65 ± 0.59	* + +
<u> </u>	5w		7w		10w		15w		20w	
Serum										
TP (g/dL)	5.43 ± 0.06		6.2 ± 0.05	**	6.58 ± 0.07	*	6.54±0.1		6.21 ± 0.11	**
albumin (g/dL)	3.76 ± 0.02		4.18 ± 0.04	*	4.31 ± 0.05		4.29±0.12		3.7 ± 0.13	**
A/G (%)	2.26 ± 0.06		2.1 ± 0.04		1.92 ± 0.06		1.91 ± 0.1		1.49 ± 0.08	**
BUN (mg/dL)	13.43 ± 1.19		17.4±1.69		19.17 ± 0.87		19.14 ± 1.25		22.29 ± 1.52	
creatinine (mg/dL)	0.6		0.72 ± 0.02	**	0.77±0.04		0.89 ± 0.03		0.89 ± 0.03	
chol (mg/dL)	114.86±5.16		119.8 ± 2.76		111.33 ± 5.79		133 ± 23.94		153.71 ± 20.93	
Urine										
TP (mg/24h)	3.73±1.01		5.48±1.12		24.39 ± 7.69		40.77±9.19		41.57±11.46	
albumin (μ g/24h)	0.11 ± 0.01		0.19 ± 0.05		0.66 ± 0.18		0.77±0.06		0.97 ± 0.25	
creatinine (mg/24h)	2.73 ± 0.35		4.6 ± 0.33	**	6.94±0.38	**	7.11±0.88		7.6 ± 0.53	

前の週齢との有意差 (*P< 0.05, **P< 0.01) 雌雄間の有意差 (*P< 0.05, * *P< 0.01)

Table 1. 血清生化学および尿検査

Figure 2. 尿のSDS-PAGE

5週齢からAlbの分子量(61kDa)付近にバンドが認められた。10週齢以降Alb以上の高分子のバンドが認められ、 その後加齢性にこれらのバンドは太くなっていた。 Mはマーカー、Sは7週齢のオスのOMの血清を表す。

Figure 3. 糸球体の組織学的変化

(a): 足細胞の細胞質内の硝子滴(矢印)。5週齢。Bar= 50μm。(b): 糸球体の血管係蹄と肥大したボーマン嚢上皮細胞 が癒着(矢印)。13週齢。Bar= 50μm。(c): 糸球体の分節性硬化(矢印)とボーマン嚢の基底膜の肥厚。20週齢。Bar= 50μm。(d): 半定量解析による各週齢の糸球体血管係蹄とボーマン嚢上皮細胞の癒着および糸球体の硬化性病変の 推移。7週齢より糸球体の硬化性病変を認め、13週齢以降、硬化性病変は5週齢と比べて有意に増加した(**P< 0.01)。 (a)

Figure 4. 尿細管間質の組織学的変化

(a):TECの細胞質内に硝子滴を認める(矢印)。5週齡。Bar=25µm。(b):TECは膨化し、細胞質内に硝子滴が多数認めら れる。13週齡。Bar=50µm。(c):ボーマン嚢腔内、尿細管管腔内の蛋白液の貯留と円柱が限局性に認められる(矢印)。 7週齢。Bar=100μm。(d):尿細管は種々の程度に障害され、間質に高度な単核細胞の集簇、線維化が瀰漫性に認めら れる。20週齡。Bar=100µm。(e):半定量解析による各週齡の間質への単核細胞浸潤(*P<0.05, **P<0.01)。(f):半定量解 析による各週齢の間質線維化(*P<0.05, **P<0.01)。

(c)

Figure 5. 各週齢におけるOPN陽性尿細管数

(a):10週齢で限局性に陽性細胞が認められた。Bar = 200µm。(b):陽性細胞は尿細管の障害の進行につれて 加齢性に増加し、周囲に単核細胞の浸潤が認められた。20週齢。Bar = 200µm。挿入図:OPNはボーマン嚢上 皮細胞に陽性を示した。Bar = 50µm。(c):OPN陽性TECを含む尿細管は10週齢より認められ、13週齢で顕著に 上昇した(**P<0.01)。

Figure 6. 間質に浸潤した単核細胞の免疫組織化学的検索

間質には5週齢よりmo,T細胞、B細胞が浸潤していた。(a):ED-1陽性mo(**P<0.01)。(b):CD3陽性T細胞(*P<0.05, **P<0.01)。(c):CD45RA陽性B細胞(*P<0.05, **P<0.01)。

(c)

Figure 7. 間質における筋線維芽細胞の増殖

(a):α-SMAは血管平滑筋にのみ陽性を示し、間質に陽性細胞は認められなかった。7週齢。Bar=100µm。(b):尿細管 周囲、単核細胞の集簇巣内で紡錘形細胞がα-SMAに陽性を示した。15週齢。Bar=100µm。(c):α-SMA陽性の筋線維 芽細胞は13週齢から認められ、20週齢で有意に増加した(**P< 0.01)。

Figure 8. 尿細管間質領域におけるOPNmRNA、MCP-1mRNAの発現量の推移

(a): OPNmRNAは5週齢から発現しており、13週齢以降有意に増加した。(b): MCP-1mRNAの発現は10週齢から 認められ、13週齢以降有意に増加した(*P< 0.05, **P< 0.01)。

Figure 9. 糸球体におけるOPNmRNA、MCP-1mRNAの発現量の推移

糸球体ではOPNmRNAが5週齢より発現していたが、週齢間に有意差は認められなかった。また、MCP-1mRNAの発現は観察されなかった。

第2章 ACEi 投与による蛋白尿抑制時における尿細管間質の変化

小序

慢性糸球体疾患の原因が明らかとなっていない現在、腎疾患の治療は腎不全進行の抑制が中心であり、腎機能の予後を規定する最も重要な因子と想定される TII 進行の制御する必要がある¹。この糸球体病変に伴う TII の原因として重要な因子が蛋白尿であり 9、特に糸球体から漏出した尿蛋白質を取り込む TEC と関連が注目されている。

TEC は種々のサイトカイン・ケモカインおよび増殖因子を産生することから¹¹、糸 球体と TII の相互機序を考える上で重要な役割を果たすと考えられる。TEC は糸球体 からの炎症性物質を含めた蛋白質、脂質の影響を血液もしくは尿を介して直接受け取る 細胞であり、尿蛋質中に含まれる Alb、IgG、トランスフェリン、リポ蛋白、糖化蛋白 などはそれぞれ TEC に対する障害性蛋白質として想定されており、何らかの腎障害因 子が働くと TEC は活性化される ⁷。

一方、TIIの進展には蛋白尿による TEC 障害のほかに、糸球体障害が TII を引き起 こすことが報告されている⁵。これは主に免疫学的因子によるもので、抗糸球体基底膜 抗体腎症モデル¹⁶などが挙げられる。これらの病変においても蛋白尿を伴うが、糸球体 障害が下流の尿細管、間質障害をもたらすと報告している。また、純粋に蛋白尿のみを 引き起こす 5·1·6 ラットモデル³では、蛋白尿のみでは長期にわたる観察においても尿 細管障害は引き起こすが間質の線維化には至らないと報告しており、尿細管障害から間 質の線維化に至るには、蛋白尿に加えてさらに別の因子が必要であり、この2つを区別 して考える必要があることを示唆している。

OM は第1章の結果から、TII の発症・進展には、蛋白尿による TEC の刺激が関連 している可能性が示唆された。そこで、蛋白尿を抑制すると尿細管間質病変は軽減され るという仮説を立て、蛋白尿の抑制時における尿細管間質の変化について、未処置の OM の尿細管間質病変と比較した。蛋白尿の抑制には TII の進展制御を目的とした治療 のひとつとして使用されている ACEi を用いた。ACEi はアンジオテンシン II (Ang II) の作用を抑制するため、糸球体の輸出細動脈の収縮による蛋白尿を減少させるほかに、 メサンギウム細胞の収縮・増殖、基質の増加による糸球体硬化を制御することで、腎機 能保護に関連していると考えられているが、ACEi は尿中 Alb 排泄の低下作用が強い⁸。

材料と方法

<動物および実験計画>

自家繁殖して得られた 3 週齢のオスの OM 8 匹を ACEi 投与群(投与群)として、 Kramer⁴らの実験に従い 75mg/L (5mg/kg/day)の Lisinopril (ロンゲス錠 10mg、塩 野義製薬、大阪)を水道水に混ぜて自由飲水させた。投与群は 13 週齢と 20 週齢で 4 匹 ずつに分け、エーテル麻酔下で腹大動脈より採血、安楽死させた。OM は、第1章と同 様の項目についての検索に加えて血圧測定を行った。また、同週齢のオスの OM を未 処置群として投与群の結果と比較した。

<血圧測定>

投薬終了後、神奈川県食品薬品安全センター秦野研究所に依頼して収縮期血圧を測定 した。収縮期血圧は無加温型非観血式血圧計(MK-2000ST、室町機械、東京)を用いて 尾動脈の収縮期血圧を5回測定し、安定した3回の測定データの平均値とした。

<尿検査>

13 週齢、20 週齢の ACEi 投与終了前日に代謝ケージ内で自由飲水させた状態で 24 時間蓄尿を行った。採取した尿は尿量の計測後凍結保存し、第1章と同様に TP、Alb、 Cre を測定した。なお、TP、Alb の測定結果は TP/ Cre 比、Alb/ Cre 比で表した。

<血清生化学検査>

血液は血清に分離後直ちに凍結保存し、第1章と同様にTP、Alb、A/G、BUN、Cre、 Cholを測定した。

<尿 SDS·PAGE>

24時間蓄尿を用いて第1章と同様に行った。

<光学顕微鏡的検索>

腎臓の 4%PFA/PBS 固定材料を、常法に従い 3µm のパラフィン切片を作製し、HE 染色、PAS 染色を施し病理組織学的に観察した。また、糸球体の硬化性病変、間質へ の単核細胞浸潤、間質線維化について第1章と同様に半定量解析を行った。

<免疫組織化学的検索>

第1章と同様に OPN、α-SMA、ED-1、CD3、CD45RA の免疫染色を施し、陽性細 胞数を計測した。

<リアルタイム PCR>

第1章と同様にLMD法により糸球体および尿細管間質領域を抽出し、OPNmRNA、 MCP-1mRNA発現の定量解析を行った。

<統計学的処理>

統計学的処理は StatView Statistical Analysis Software を用いた。投与群と未処置 群の結果の比較は Mann-Whitney U-test を行った。 <血圧>

未処置群の収縮期血圧は 13 週齢で 158±2.1mmHg、20 週齢で 141.8±5.5mmHg で あったのに対して、投与群の収縮期血圧は 13 週齢が 89.3±5.2mmHg、20 週齢が 106 ±1.7mmHg で、両週齢ともに未処置群に比べて投与群の収縮期血圧は有意に減少した (Table 1)。

<血清生化学および尿検査>

血清 TP 値は 13 週齢で投与群が未処置群よりも低かったが(P< 0.05)、20 週齢では有意 差は認められなかった。一方、投与群の血清 Alb 値は両週齢とも未処置群に比べて有意 に低下し(13 週齢: P< 0.05、20 週齢 P< 0.01)、血清 Cre 値、Chol 値も未処置群に比 べて投与群は有意に低下した(P< 0.01)。また、投与群の尿の TP/ Cre 比、Alb/ Cre 比 は両週齢とも未処置群と比べて有意に低下した(P< 0.05) (Table 2)。

<尿 SDS-PAGE>

未処置群は両週齢とも血清と同程度の太さの Alb のバンドを形成し、Alb 以上の高分子のバンドが認められた。一方、投与群では両週齢とも Alb の分子量付近にバンドが認められたが、それ以上の高分子のバンドは形成されず、尿蛋白質は未処置群に比べて明らかに減少していた。(Figure 1)。

<ACEi 投与による糸球体および尿細管、尿細管間質の組織学的変化の比較>

未処置群は、13 週齢では足細胞の硝子滴の沈着と糸球体係蹄壁とボーマン嚢との癒 着、分節性硬化を認める糸球体が散見され(Figure 2-a)、20 週齢ではこれらの病変を認 める糸球体の数が増加したが、投与群では両週齢とも糸球体の病変はほとんど認められ なかった(figure 2-b)。尿細管間質病変については、未処置群の13 週齢では種々の程度 の TEC の変性と限局性の単核細胞の集簇巣、尿細管の萎縮を伴う間質結合組織の増生 を認め(Fiture 3-a)、20 週齢でこれらの病変は進展した。一方、投与群では TEC の細 胞質内に硝子滴を認めたが、13 週齢、20 週齢ともに間質に浸潤した単核細胞はわずか で、間質の線維化はほとんど認められなかった(Figure 3-b)。糸球体の硬化性病変、単

核細胞浸潤、間質線維化の半定量解析では、いずれも投与群で有意に減少した(Figure 2-c, 3-c, d)。

<ACEi 投与による TII 発症・進展の免疫組織化学的検索の比較>

免疫染色を施し、OPN により尿細管障害を、ED-1、CD3、CD45RA により単核細胞浸潤を、 α -SMA により間質線維化を評価し、投与群、未処置群の TII 発症・進展について比較した。未処置群では OPN 陽性の尿細管が多数認められたが(Figure 4-a)、 投与群では 13 週齢、20 週齢ともに OPN 陽性細胞は観察されなかった(Figure 4-b, c)。 未処置群で観察された単核細胞の集簇巣は投与群には認められず、単核細胞はいずれも m ϕ 、T 細胞が間質にわずかに浸潤する程度であった(Figure 5)。また、投与群に間質 線維化はみられず、 α -SMA 陽性細胞は認められなかった(Figure 6)。

<ACEi 投与による尿細管間質領域における MCP·1mRNA、OPNmRNA 発現の比較> 投与群の尿細管間質領域における MCP·1mRNA、OPNmRNA の発現は、どちらも 13 週齢では発現は認められず、20 週齢でわずかに発現していたが、未処置群と比べて 有意に抑制された(P< 0.05) (Figure 7-a, b)。</p>

考察

ACEi の投与により OM に早期からみられる蛋白尿を減少させると、糸球体障害と TII は明らかに改善された。TEC の OPN 発現は抑制され、尿細管間質領域における OPNmRNA、MCP-1mRNAの発現も 20 週齢でわずかに発現していたものの、13 週齢 では発現が抑制された。

ACEiを用いた多くの実験において、蛋白尿誘発性腎障害の著明な改善が報告されて おり 4.15、OM も ACEi の投与により糸球体障害、TII が改善した。今回、OM には ACEi として Lisinopril を用いた。Lisinopril は長時間作用型の ACEi で、糸球体内圧の低下 だけでなく、糸球体基底膜のチャージバリアを回復させることによって尿蛋白質の漏出 を抑制していると考えられている¹⁵。Remuzzi ら¹¹は、自然発症性に腎障害を認める Munich Wistar Fromter ラットに Lisinopril を 15 週間投与し、投与期間中の蛋白尿を 低下させ、糸球体障害、TII を抑制することを報告している。今回の実験の投与期間は Remuzzi らの投薬期間と近似した 10 週間と 17 週間で、OM の蛋白尿は ACEi の薬理 作用によって減少したと考えられた。

ACEiの投与によって糸球体障害は有意に改善したが、これは ACEi の作用機序によ り説明することができる。ACEi は糸球体内圧の低下により、糸球体濾過量自体を減少 させることで蛋白尿の漏出を抑制するほかに、ACEi は糸球体濾過におけるサイズバリ アの破綻の抑制が蛋白尿を減少と関連していることが報告されている¹²。糸球体高血圧 は糸球体過剰濾過状態を表しており、足細胞は持続的な物理的負荷や過剰な蛋白質の取 り込みにより脱落し、蛋白尿が出現すると考えられている²。足細胞の脱落は過剰な蛋 白尿を漏出させるだけでなく、血管係蹄とボーマン嚢上皮細胞の癒着を引き起こし、糸 球体硬化が進行する。つまり、ACEi は糸球体障害を抑制することによって蛋白尿を抑 制していると考えられており、OM においても同様の機序によって糸球体障害が抑制さ れていると考えられた。

このように、ACEi は糸球体障害の抑制によって尿蛋白質の漏出を抑制し、さらに TII の発現・進行が抑制された。進行性腎障害の発現・進展には、糸球体高血圧や蛋白尿の ほかに、間質に浸潤する mφ、T 細胞といった単核細胞の浸潤が関連していると考えら れている。これらの細胞は TGF-β などの線維化を誘導するサイトカインの分泌によっ て、線維芽細胞の増殖や間質の結合組織の増生を誘導し、間質線維化が進行することが
知られている^{10.13}。そして、単核細胞の浸潤と間質の線維化が進行すると、間質の血行 動態の変化や蛋白尿の尿細管腔内通過を変化させて、腎機能障害を引き起こす¹¹。また、 間質線維化は一旦進行すると、ACEiを投与しても TII の進行を抑制できないことが報 告されており⁴、ACEi による TII の発現・進行の抑制は、単核細胞の浸潤を抑制する ことによると考えられている^{4,11-13}。このことから、OM においても ACEi による単核 細胞浸潤の減少がその後の重度な TII への進行を抑制していると考えられた。

OM は ACEi 投与によって、TEC の OPN の産生、尿細管間質領域における OPNmRNA の発現が有意に抑制された。OPN は $m\phi$ の浸潤を誘導することが多くの 実験で報告されている ^{4,6,17}。Kramer ら ⁴ は Lisinopril の投与によって TEC からの OPNmRNA 発現が抑制され、間質へ浸潤する $m\phi$ 数が減少したことを報告している。 このことから、ACEi 投与による OM の間質における $m\phi$ 、T 細胞の減少は、TEC に おける OPN 発現の抑制が関連していると考えられた。また、OPN 発現の減少は TEC の形質転換が抑制されていることを示していることから、ACEi は TEC の形質転換の 抑制を通じて MCP-1 などのサイトカインの発現も抑制していることが示唆された。

結論として、蛋白尿の抑制による TII の変化から、尿細管間質領域における OPN、 MCP-1 といったサイトカインの発現が蛋白尿によって誘導され、間質の細胞浸潤を惹 起することが予想された。

参考文献

- 1 Bohle A, Strutz F, Muller GA: On the pathogenesis of chronic renal failure in primary glomerulopathies: a view from the interstitium. Exp Nephrol **2**: 205-210, 1994
- 2 Durvasula RV, Petermann AT, Hiromura K, Blonski M, Pippin J, Mundel P, Pichler R. Griffin S, Couser WG, Shankland SJ: Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int 65: 30-39, 2004
- 3 Kikuchi H, Kawachi H, Ito Y, Matsui K, Nosaka H, Saito A, Orikasa M, Arakawa M, Shimizu F: Severe proteinuria, sustained for 6 months, induces tubular epithelial cell injury and cell infiltration in rats but not progressive interstitial fibrosis. Nephrol Dial Transplant 15: 799-810, 2000
- 4 Kramer AB, Ricardo SD, Kelly DJ, Waanders F, van Goor H, Navis G: Modulation of osteopontin in proteinuria-induced renal interstitial fibrosis. J Pathol 207: 483-492, 2005
- 5 Kriz W, LeHir M: Pathways to nephron loss starting from glomerular diseases-insights from animal models. Kidney Int **67**: 404-419, 2005
- 6 Lorenzen J, Shah R, Biser A, Staicu SA, Niranjan T, Garcia AM, Gruenwald A, Thomas DB, Shatat IF, Supe K, Woroniecki RP, Susztak K: The role of osteopontin in the development of albuminuria. J Am Soc Nephrol 19: 884-890, 2008
- 7 Matsuo S, Morita Y, Maruyama S, Manchang L, Yuzawa Y: Proteinuria and tubulointerstitial injury: the causative factors for the progression of renal diseases. Contrib Nephrol 139: 20-31, 2003
- 8 Meyer TW, Anderson S, Rennke HG, Brenner BM: Reversing glomerular hypertension stabilizes established glomerular injury. Kidney Int **31**: 752-759, 1987
- 9 Nangaku M: Hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. Nephron Exp Nephrol 98: e8-12, 2004
- 10 Okada H, Strutz F, Danoff TM, Kalluri R, Neilson EG: Possible mechanisms of renal fibrosis. Contrib Nephrol 118: 147-154, 1996
- 11 Remuzzi A, Gagliardini E, Donadoni C, Fassi A, Sangalli F, Lepre MS, Remuzzi G, Benigni A: Effect of angiotensin II antagonism on the regression of kidney disease in

the rat. Kidney Int **62**: 885-894, 2002

- 12 Remuzzi A, Perticucci E, Ruggenenti P, Mosconi L, Limonta M, Remuzzi G: Angiotensin converting enzyme inhibition improves glomerular size-selectivity in IgA nephropathy. Kidney Int 39: 1267-1273, 1991
- 13 Remuzzi G, Bertani T: Pathophysiology of progressive nephropathies. N Engl J Med
 339: 1448-1456, 1998
- 14 Segerer S, Nelson PJ, Schlondorff D: Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol 11: 152-176, 2000
- 15 Shinosaki T, Miyai I, Nomura Y, Kobayashi T, Sunagawa N, Kurihara H: Mechanisms underlying the ameliorative property of lisinopril in progressive mesangioproliferative nephritis. Nephron 91: 719-729, 2002
- 16 Theilig F, Kriz W, Jerichow T, Schrade P, Hahnel B, Willnow T, Le Hir M, Bachmann S: Abrogation of protein uptake through megalin-deficient proximal tubules does not safeguard against tubulointerstitial injury. J Am Soc Nephrol 18: 1824-1834, 2007
- Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, Gejyo F: Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int 60: 1645-1657, 2001

要旨

第1章の結果から、蛋白尿を抑制すると尿細管間質病変は軽減されるという仮説を立て、OMにACEi(Lisinopril)を3週齢より飲水に混ぜて投与し、13、20週齢の糸球体および尿細管間質病変を検索した。

ACEi 投与により糸球体高血圧ないし過剰濾過の抑制を期待したところ、OM の収縮 期血圧は低下し、尿中の TP が有意に低下した。尿の SDS・PAGE では Alb の分子量に バンドが認められたが、それ以上の高分子蛋白質のバンドは形成されず、未処置群に比 べて有意に抑制された。投与群の血清 Cre 値は未処置群に比べて有意に減少した。組 織学的に、ACEi の投与によって未処置群にみられた足細胞における硝子滴の高度な沈 着、ボーマン嚢上皮細胞への癒着は有意に抑制された。 また、TEC の細胞質内に硝子 滴が認められたが、著明な形態学変化はなく OPN 抗体にも陰性であったが、間質には m ϕ 、T 細胞がわずかに浸潤していた。尿細管間質領域における OPNmRNA の発現は 未処置群に比べて有意に抑制されたが、13、20 週齢ともわずかに発現していた。また、 20 週齢では MCP・1mRNA が発現していた。糸球体では、投与群はどちらの週齢も OPNmRNA、MCP・1mRNA の発現はなかった。

以上、蛋白尿の抑制による TII の変化から、尿細管間質領域における OPN、MCP-1 といったサイトカインの発現が蛋白尿によって誘導され、間質への細胞浸潤を惹起する ことが予想された。

	Untreated	ACEi
13w	158±2.1	89.3±5.2 **
20w	141.8±5.5 ^{+ +}	106±1.7 *

処置群間の有意差(*P < 0.05、**P < 0.01) 週齢間の有意差(*P < 0.01、* *P < 0.01)

Table 1. 投与群および未処置群の収縮期血圧(mmHg)

	Untreated 13w	ACEi13w		Untreated 20w	ACEi 20w	
Serum						
TP (g/dL)	6.4 ± 0.14	6.06 ± 0.11	*	6.21 ± 0.08	6.3 ± 0.19	
Alb (g/dL)	3.48 ± 0.13	4.1 ± 0.08	*	2.86 ± 0.03	4.15 ± 0.14	**
A/G (%)	1.2 ± 0.07	2.1 ± 0.04	**	0.86 ± 0.02	1.94 ± 0.06	**
BUN (mg/dL)	23 ± 1.47	24.5 ± 1.52		60.43±7.74	27.83 ± 5.27	**
Cre (mg/dL)	0.8 ± 0.04	0.46 ± 0.02	**	1.31 ± 0.09	0.53 ± 0.02	**
Chol (mg/dL)	240 ± 26.68	86.1 ± 2.37	**	541.57 ± 46.12	84.17 ± 3.68	**
Urine						
TP/ Cre	12.99 ± 1.28	0.35 ± 0.06	*	22.35 ± 2.79	0.44 ± 0.27	*
Alb/ Cre	0.31 ± 0.04	0.06 ± 0.01	*	0.48 ± 0.06	0.16 ± 0.1	*
Cre (mg/dL)	128.29 ± 3.48	93.5 ± 4.94		114.29 ± 6.05	122.5 ± 6.5	

Mann-Whitney U-test

同週齡の投与群間の有意差(*P < 0.05、**P < 0.01)

Figure.1 投与群および未処置群の尿のSDS-PAGE

未処置群では両週齢ともAlbの分子量(61kDa)よりも高分子の蛋白質を尿中に認めた。投与群は13週齢でAlbの 分子量付近にバンドを認め、20週齢でバンドは明らかとなったが、Alb以上の高分子の蛋白質は認められなかった。 M:マーカー、S:7週齢のOMの血清。

Figure 2. ACEi投与による糸球体の組織学的変化の比較

(a):硝子滴の沈着(矢印)と糸球体の高度な硬化性病変。未処置群。13週齡。Bar=50µm。(b):硬化性病変は ほとんど観察されなかった。投与群。13週齡。Bar=50µm。(c):半定量解析による投与群および未処置群にお ける糸球体硬化およびボーマン嚢上皮細胞との癒着。投与群の病変は両週齡とも未処置群に比べて有意に 減少した(**P<0.01)。

Figure 3. ACEi投与による尿細管間質の組織学的変化の比較

(a):尿細管は種々の程度に障害され、限局性に単核細胞の集簇(矢印)、基底膜の肥厚を伴う尿細管の萎縮(矢頭) を認める。未処置群。13週齢。Bar= 100μm。(b):ACEi投与により未処置群と比べて尿細管間質病変は抑制されてい る。投与群。13週齢。Bar= 100μm。(c):半定量解析による投与群、未処置群における間質への単核細胞浸潤。投与 群の間質への単核細胞浸潤は有意に抑制されている(*P< 0.05, **P< 0.01)。(d):半定量解析による投与群と未処置 群の間質線維化。投与群では13週齢、20週齢ともに尿細管の萎縮、間質の線維化は観察されなかった(**P< 0.01)。

Figure 4. ACEi投与によるTECの形質転換とOPN陽性尿細管数の比較

(a):OPN陽性の尿細管を認めた。未処置群。13週齢。Bar=100μm。(b):OPN陽性の尿細管は観察されなかった。 投与群。20週齢。Bar=100μm。(c):各処置群におけるOPN抗体陽性TECを含む尿細管数の週齢による比較 (**P< 0.01)。

Figure 5. ACEi投与による間質への浸潤細胞数の比較

投与群の単核細胞数はいずれも未処置群と比べて有意に抑制された。(a): ED-1陽性mφ(*P<0.05, **P<0.01)。 (b): CD3陽性T細胞(**P<0.01)。(c): CD45RA陽性B細胞(*P<0.05, **P<0.01)。

(c)

Figure 6. ACEi投与による間質における筋線維芽細胞数の比較

(a): 糸球体周囲、拡張した尿細管の周囲にα-SMA陽性細胞の増殖を認める。未処置群。13週齢。Bar= 100μm。 (b):間質にはわずかな単核細胞の浸潤を認めるが、α-SMA陽性細胞は観察されなかった。投与群。20週齢。 Bar= 100μm。(c):投与群は両週齢ともα-SMA陽性細胞は認められなかった(**P < 0.01)。

Figure 7. ACEi投与による尿細管間質領域におけるOPNmRNA、MCP-1mRNA発現の比較

尿細管間質領域におけるOPNmRNA (a)、MCP-1mRNA (b)の発現量は各週齢とも未処置群と比較して投与群の mRNAの発現量は有意に低下していた(*P<0.05)。

第3章 BSA 投与による蛋白質負荷下における尿細管間質の変化

小序

蛋白尿は糸球体疾患の指標と考えられている一方で、腎障害を発症・進展させる独立 した因子であることが想定されている⁸。蛋白尿漏出性の腎疾患では、間質への単核細 胞浸潤と線維化が共通の病変として観察される。一般に、糸球体を通過した蛋白質は TEC を活性化させて、サイトカイン・ケモカインの発現、単核細胞の浸潤、間質線維 化を誘導することが多くの実験で報告されている^{7,9}。

蛋白尿により TII を発症させる目的として、BSA 投与による蛋白質負荷が知られて いる²。他種の血清である BSA の投与は、免疫学的機序による炎症を惹起することが 予想されるが、この方法は 50 年以上前から行われており、病理発生に BSA による免 疫学的な機序はないと考えられている²。

OM はこれまでの結果から、5 週齢で蛋白尿を発症しており、TEC に OPNmRNA が 発現し、間質には単核細胞の浸潤を認めること、糸球体障害に伴う蛋白尿の増加によっ て TII は進展することから、TII は蛋白尿による TEC の刺激が関連していることが示 唆された。また、ACEi の投与による蛋白尿の減少によって尿細管間質からのサイトカ イン発現が抑制され、間質への単核細胞浸潤が抑制されたことから、単核細胞浸潤には TEC からのサイトカイン発現が関連していることが示唆された。

そこで、OM の蛋白尿を増悪させることを目的として、BSA を投与して糸球体に蛋白質負荷を加え、自然発症よりも早期かつ重度に蛋白尿を発症させ、TII が発症・増悪するかを調べた。また、同時に BSA と ACEi を併用した群、生理食塩水を投与したものと比較し、蛋白尿と TII 関連を検討した。

材料と方法

<動物および実験計画>

自家繁殖して得られた 4 週齢のオスの OM11 匹のうち、4 匹を BSA 群として、30% BSA/ 0.85% sodium chloride (A 8327、Sigma Aldrich、USA) 1.0g/ 100g (3.5mL)を腹 腔内投与した。他の4 匹は併用群として BSA 群と同様に BSA を投与するほかに ACEi (Lisinopri、ロンゲス錠 10mg、塩野義製薬、大阪)を 75mg/L (5mg/ kg/ day)を水道水 に混ぜて自由飲水させた。対照群は 3.5mL の生理食塩液(テルモ生食、TERUMO、東 京)を腹腔内投与した。BSA および生理食塩水の投与は週 6 回、3 週間行った。投与終 了の翌日にエーテル麻酔下で腹大動脈より採血し、安楽死させ、第 1 章と同様の項目に ついて検索した。

<尿検査>

BSAおよび生理食塩水の投与終了前日に代謝ケージ内で自由飲水させた状態で24時間蓄尿を行った。採取した尿は尿量の計測後凍結保存し、第1章と同様にTP、Alb、Creを測定した。

<血清生化学検査>

血液は血清に分離後直ちに凍結保存し、第1章と同様にTP、Alb、A/G、BUN、Cre、 Cholを測定した。

<尿 SDS-PAGE>

24時間蓄尿を用いて第1章と同様に行った。

<光学顕微鏡的検索>

腎臓の 4%PFA/ PBS 固定材料を、常法に従い 3µm のパラフィン切片を作製し、HE 染色、PAS 染色を施し病理組織学的に観察した。また、糸球体の硬化性病変、間質への単核細胞浸潤、間質線維化について第1章と同様に半定量解析を行った。

<免疫組織化学的検索>

第1章と同様に OPN、α-SMA、ED-1、CD3、CD45RA の免疫染色を施し、陽性細胞 数を計測した。

<リアルタイム PCR>

第1章と同様にLMD法により糸球体および尿細管間質領域を抽出し、OPNmRNA、 MCP-1mRNA発現の定量解析を行った。

<統計学的処理>

統計学的処理は StatView Statistical Analysis Software を用いた。投与群間の比較 は Kruskal Wallis H-test を行い、有意性の認められたものについて Mann-Whitney U-test を行った。 <血清生化学検査>

BSA 群の TP 値は対照群、併用群に比べて低かったが、3 群間に有意差は認められな かった。Alb 値は対照群と比べて BSA 群、併用群は有意に低下しており(P< 0.05)、ま た BSA 群は併用群よりも低い値であったが有意差は認められなかった。BUN 値は対 照群に比べて BSA 群、併用群は有意に上昇していたが(P<0.05)、併用群の値は BSA 群 よりも上昇していた。また、いずれの値も併用群の標準誤差が 3 群間で最も大きかった (Table 1)。

<尿検査結果>

24 時間蓄尿時に水様便が混入した検体は測定できなかったため、有意差の判定はできなかったが、BSA 群、併用群の TP 値は対照群に比べて明らかに増加していた(Table 2)。

<尿 SDS-PAGE による蛋白尿分画の検討>

対照群は、Alb の分子量付近にバンドを認めたが、それ以上の高分子のバンドは認め られなかった。BSA 群は Alb の分子量付近に血清よりも太いバンドが認められ、また 血清と類似した高分子のバンドを形成した。併用群では BSA 群よりも細いバンドを形 成し、高分子のバンドもわずかに認められた(Figure 1)。

<BSA 投与による糸球体および尿細管、尿細管間質の組織学的変化の比較>

糸球体は、対照群では足細胞の硝子滴をわずかに認める程度であったが(Figure 2-c、 矢印)、BSA 群は足細胞に高度の硝子滴沈着が認められ(Figure2-a、矢印)、ボーマン嚢 上皮細胞と血管係蹄の癒着した糸球体が散見された。併用群では足細胞に高度の硝子滴 の沈着が認められたが、硬化性病変はほとんど観察されなかった(Figure 2-b)。糸球体 の硬化性病変の半定量解析では、対照群に比べて BSA 群、併用群は有意に増加してお り(P< 0.01)、また BSA 群と併用群の間にも有意差が認められた(P<0.01)。尿細管間質 では、対照群は TEC の硝子滴の沈着と単核細胞が間質わずかに浸潤している程度であ ったが(Figure 3-c)、BSA 群では TEC は高度な硝子滴の沈着、空胞変性、尿細管の拡

張像が多巣状性に観察された。間質には高度な単核細胞の集簇巣、線維化像が散見された(Figure 3-a、矢印)。併用群の病変は対照群と同程度に軽減したが、単核細胞の集簇 巣が形成された(Figure 3-b)。単核細胞浸潤、間質線維化について半定量解析を行った 結果、単核細胞浸潤は BSA 群、併用群、対照群の順に多く、すべての群間で有意差が 認められた(Figure 3-e)。間質線維化は対照群には認められず、BSA 群が最も線維化が 進展しており、併用群とも有意差が認められた(Figure 3-d)。

<BSA 投与による TII 発症・進展の免疫組織化学的検索の投与群間の比較>

免疫染色を施し、OPN により尿細管障害を、ED-1、CD3、CD45RA により単核細 胞浸潤を、 α ·SMA により間質線維化を評価し、投与群、未処置群の TII 発症・進展に ついて比較した。対照群、併用群では OPN 陽性の尿細管は限局性に認められる程度で あったが、BSA 群では OPN 陽性の尿細管を多数認め、その数は有意に増加していた(P< 0.01) (Figure 4-a, b, c)。また、BSA 群では肥大したボーマン嚢上皮細胞に OPN 陽性を 示した(Figure 4-d)。間質への浸潤した単核細胞数の総数は BSA 群で他の群よりも有意 に高く(P< 0.01)(Figure 5-a)、併用群、対照群に有意差は認められなかった。また、各 群における単核細胞の構成は、BSA 群、併用群は対照群とは異なり、m ϕ が最も多か った(Figure 5-b, c, d)。 α -SMA 陽性細胞は、対照群、併用群ではボーマン嚢周囲でわ ずかに認められた(Figure 6-b, c)。BSA 群の α -SMA 陽性細胞数は他の群よりも有意に 増加しており(P< 0.01)(Figure 6-d)、ボーマン嚢、尿細管の周囲に観察された (Figure 6-a)。

<BSA 投与による尿細管間質における MCP-1mRNA、OPNmRNA の発現の変化> 対照群では OPNmRNA の発現がわずかに認められたが、MCP-1mRNA は発現して いなかったのに対して、BSA 群では OPNmRNA の発現量は対照群に比べて有意に上 昇し(P< 0.05)、また MCP-1mRNA が発現していた。併用群の OPNmRNA 発現量は BSA 群よりも低下しており、MCP-1mRNA の発現は認められなかった(Figure 7)。

考察

今回の実験の結果、OM は BSA の負荷によって自然発症では観察されない週齢で重 度の蛋白尿を発現させることにより、強い糸球体障害、TII が引き起こされた。また、 ACEi との併用によってこれらの病変は軽減した。

蛋白質負荷によって蛋白尿を発現させ、TIIを惹起させる実験は多く行われている^{2,8.9}。 これらの実験ではラットに異種の蛋白質を投与しているにも関わらず、免疫学的機序に よる炎症反応は観察されず、TII が進行する。 OM においても大量の BSA 負荷により、 糸球体に高度な足細胞の硝子滴の沈着、ボーマン嚢上皮細胞と血管係蹄の癒着した像が 多数認められたが、免疫学的機序に関連した病変は認められず、TII が進行した。BSA 群は尿細管の拡張、TEC の空胞変性といった高度な尿細管障害を認め、OPN 陽性の尿 細管が多数観察された。van Timmeren ら ºは亜腎摘したラットに BSA を負荷した実 験で、vimentin 陽性 TEC と蛋白尿の関連を指摘しており、OM においても TEC の形 質転換を示唆する OPN 発現は蛋白尿により引き起こされたと考えられた。また、間質 に浸潤した単核細胞の割合は mφが最も多かった。Eddy²はラットに BSA を投与し、 経時的に病変を観察した実験で、m φ が T 細胞に先行して浸潤し、浸潤した細胞は m φが最も多いと報告している。さらに、浸潤した mφは障害された TEC に対する細胞 性免疫を誘導していることを指摘している。今回の実験で確認することはできなかった が、OMにおいても同一の機序でTIIが進展した可能性が示唆された。m φ の浸潤に関 して、MCP-1 をノックアウトしたラットに BSA を投与した実験では浸潤した mφ数 は減少し、さらに間質線維化が減少したと報告している⁸。これは MCP-1 と m φ 浸潤 の直接的な関連を示しており、また間質線維化に m φ が関与していることを示唆してい る。OM においても BSA 群の尿細管間質領域に MCP-1mRNA、OPNmRNA の発現を 認めていることから、蛋白尿により障害された TEC から MCP-1、OPN が発現し、細 胞浸潤を誘導していると考えられた。

今回の実験でACEiを投与すると病変は軽減したが、尿 SDS-PAGE により明らかな 尿蛋白質が認められ、間質へ浸潤した単核細胞数は併用群よりも増加した。また、単核 細胞は BSA 群と同様に m φ が最も多かった。BSA 投与により発現する TII の程度は BSA の量に依存することが報告されており²、併用群は ACEi により尿中に漏出する BSA の量が減少したために病変が軽減したと考えられた。また、この結果から蛋白尿

が TII を進展させることが示唆された。BSA により糸球体から大量に漏出した蛋白尿 は、Alb 自体が過剰に取り込まれることで TEC を障害するが4、尿の SDS-PAGE で血 清と類似したバンドを形成したことや、糸球体の組織学的変化から、尿中には Alb と結 合した脂肪酸³Alb と鉄イオンが結合したトランスフェリン¹、Alb とともに糸球体を濾 過された補体⁵、また、ネフローゼ症候群の高脂血症に伴い尿中へ排出される酸化低比 重リポ蛋白質(酸化 LDL)⁶などが含まれていると考えられ、尿中 Alb 単独というよりは、 複数の因子の総合作用により TEC が障害され、TII が進行している可能性が考えられ た。

結論としては、自然発症よりも強い糸球体障害を惹起し、より大量に糸球体から蛋白 尿が漏出すると、高度な TII が引き起こされることが示された。

参考文献

- Chen L, Boadle RA, Harris DC: Toxicity of holotransferrin but not albumin in proximal tubule cells in primary culture. J Am Soc Nephrol 9: 77-84, 1998
- 2 Eddy AA: Interstitial nephritis induced by protein-overload proteinuria. Am J Pathol 135: 719-733, 1989
- 3 Kees-Folts D, Sadow JL, Schreiner GF: Tubular catabolism of albumin is associated with the release of an inflammatory lipid. Kidney Int 45: 1697-1709, 1994
- 4 Maack T, Johnson V, Kau ST, Figueiredo J, Sigulem D: Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int **16**: 251-270, 1979
- 5 Nangaku M, Pippin J, Couser WG: Complement membrane attack complex (C5b-9) mediates interstitial disease in experimental nephrotic syndrome. J Am Soc Nephrol 10: 2323-2331, 1999
- 6 Ong AC, Moorhead JF: Tubular lipidosis: epiphenomenon or pathogenetic lesion in human renal disease? Kidney Int 45: 753-762, 1994
- 7 Remuzzi G, Bertani T: Pathophysiology of progressive nephropathies. N Engl J Med 339: 1448-1456, 1998
- 8 Shimizu H, Maruyama S, Yuzawa Y, Kato T, Miki Y, Suzuki S, Sato W, Morita Y, Maruyama H, Egashira K, Matsuo S: Anti-monocyte chemoattractant protein-1 gene therapy attenuates renal injury induced by protein-overload proteinuria. J Am Soc Nephrol 14: 1496-1505, 2003
- 9 van Timmeren MM, Bakker SJ, Vaidya VS, Bailly V, Schuurs TA, Damman J, Stegeman CA, Bonventre JV, van Goor H: Tubular kidney injury molecule-1 in protein-overload nephropathy. Am J Physiol Renal Physiol 291: F456-464, 2006

要旨

蛋白尿を増悪させることを目的として、BSA を投与して糸球体に蛋白質負荷を加え、 自然発症よりも早期かつ重度に蛋白尿を発症させ、TII が発症、増悪するかを調べた。

BSA は 4 週齢より 3.5mL (1.0g/100g)を 3 週間腹腔内投与した。また、同時に BSA の腹腔内投与と ACEi (Lisinopril)の自由飲水による経口投与を併用した群(併用群)、生 理食塩液 3.5mL を腹腔内投与した群(対照群)を設定し、これらの病変と比較した。

BSAのみを投与した群(BSA 群)の尿中 TP は対照群に比べて顕著に増加した。併用群 ではBSA群と比べて有意に抑制されたが、対照群より高い値を示した。尿のSDS-PAGE では、対照群は Alb の分子量付近にバンドを形成したが、これより高分子のバンドは認 められなかったのに対し、BSA 群では Alb の分子量付近に血清よりも太いバンドが認 められ、また血清と類似した高分子のバンドを形成した。併用群では BSA 群と比べて 高分子のバンドは明らかに細くなったが、対照群と比べて太い Alb のバンドを形成した。 血清 Cre 値は3 群間に有意差はなかった。組織学的には、対照群の糸球体にはほとん ど病変はなかったが、BSA 群で足細胞の高度な硝子滴沈着と、ボーマン嚢上皮細胞と 血管係蹄の癒着像を多数認めた。併用群では硝子滴の沈着した足細胞が散見されたが、 ボーマン嚢との癒着はほとんど認められなかった。なお、BSA 投与による糸球体の炎 症反応は観察されなかった。尿細管間質では対照群では TEC 内に硝子滴を認めるほか に病変はなかったが、BSA 群では尿細管の高度な拡張や TEC の空胞変性が散見され、 また間質に単核細胞の集簇、線維化を多巣状性に認められた。併用群では BSA 群より も病変は軽減し、間質には散在性に単核細胞の浸潤を認めたが、集簇巣や線維化はほと んど観察されなかった。また、間質に浸潤した単核細胞について免疫組織化学的に検索 した結果、いずれの群においても $m\phi$ 、T 細胞、B 細胞の浸潤が確認されたが、BSA 群、併用群では浸潤細胞の割合が対照群とは異なっており、mφが最も多く浸潤してい た。尿細管間質におけるサイトカイン発現の検索では、対照群は OPNmRNA のみわず かに発現していたが、BSA 群では OPNmRNA の高度な発現に加えて MCP-1mRNA が 発現していた。併用群の OPNmRNA の発現量は BSA 群に比べて減少したが、対照群 より高い値を示した。また、MCP-1mRNAの発現は認められなかった。

以上の結果から、自然発症よりも強い糸球体障害を惹起し、より大量に糸球体から蛋 白尿が漏出すると、高度な TII が引き起こされることが示された。

	BSA	BSA+ACEi	Saline
TP (g/dL)	5.45±0.15	6.48±0.61	6.43±0.35
albumin (g/dL)	2.53±0.15 *	3.4±0.33 *	4.37±0.27
A/G (%)	0.87±0.06 *	1.18±0.19 *	2.12 ± 0.13
BUN (mg/dL)	27.5±1.19 *	48.75±10.44 *	17.33 ± 0.88
creatinine (mg/dL)	0.4	0.725 ± 0.33	0.43 ± 0.03
chol (mg/dL)	452.25 ± 48.35	302.75±131.46	112.33 ± 14.19

対照群との有意差(*P < 0.05)

Table 1. 各群の血清生化学検査

	BSA		BSA+ACEi	Saline	
	No.1	No.2	No.5	No.9	
TP (mg/24h)	567	647.5	489.6	1.512	
albumin (μ g/24h)	4.3875	9.8975	0.85	1.323	
creatinine (mg/24h)	2.7	1.3875	2.176	3.024	

Table 2. 各群の尿検査結果

24時間蓄尿時に水様便の混入した検体は測定できなかったため、測定可能な個体の検査結果のみ示した。

Figure 1. 各投与群における尿SDS-PAGEの蛋白質分画

BSA群において、BSAの分子量に一致して太いバンドを認め、Alb以上の高分子量蛋白質のバンドを認め、血清と類似していた。 BSA+ACEi群ではAlbの分子量に明らかなバンドの形成を認めた。

Figure 2. BSA投与による各群の糸球体における組織学的変化

(a): 糸球体は足細胞に高度の硝子滴が沈着し(矢印)、ボーマン嚢上皮細胞と糸球体の癒着を認める。BSA群。 Bar= 50μm。(b): 併用群。Bar= 50μm。(c): 対照群。足細胞に硝子滴の沈着を認めるが(矢印)、糸球体の硬化性 病変はわずかであった。対照群。Bar= 50μm。

Figure 3. BSA投与による各群の尿細管間質における組織学的変化

 (a):尿細管は種々の程度に障害され、間質に単核細胞の集簇(矢印)、線維化(矢頭)を認める。BSA群。Bar=100μm。
 (b):TECに硝子滴を認め、間質に微小な単核細胞の集簇を認める(矢印)。併用群。Bar=100μm。(c):TECの硝子滴と 間質へのわずかな単核細胞浸潤を認める(矢印)。対照群。Bar=100μm。(d):半定量解析による各群の間質への単核 細胞浸潤の比較(*P<0.05, **P<0.01)。(e):半定量解析による各群の間質線維化の比較(*P<0.05, **P<0.01)。

Figure 4. BSA投与による各群におけるTECの形質転換とOPN陽性細胞数の比較

 (a):OPN陽性の尿細管を多巣状性に認める。BSA群。Bar=200μm。(b):OPN陽性細胞周囲に単核細胞浸潤を認める。
 併用群。Bar=200μm。(c): OPN陽性の尿細管が散見される。対照群。Bar=200μm。(d):BSA群では肥大したボーマン 嚢上皮細胞がOPN陽性を示した(矢印)。Bar=50μm。(e):BSA群の陽性細胞数は他の群に比べて有意に増加していたが、併用群と対照群の間に有意差は認められなかった(*P< 0.05, **P< 0.01)。

Figure 5. BSA投与による各群における間質への浸潤細胞数の比較

(a):間質に浸潤したmφ、T細胞、B細胞の総数は、BAS群で他の群に比べて有意に増加していた。(**P< 0.01)。
 (b):BSA群。(c):併用群。(d):対照群。BSA群、併用群は対照群と異なり、浸潤した単核細胞はmφが最も多かった。
 (*P< 0.05, **P< 0.01)。

(a): α-SMA陽性細胞はボーマン嚢、尿細管の周囲に認められた。BSA群。Bar= 100µm。(b)併用群。 Bar= 100µm。、(c): 対照群。Bar= 100µm。併用群と対照群は陽性細胞は間質にわずかに認められ る程度であった。併用群。Bar= 100µm。(d): BSA群のα-SMA陽性細胞数は他の群と比べて有意差が 認められた (**P< 0.01)。

Figure 7. BSA投与による尿細管間質領域における各群のMCP-1mRNA、OPNmRNA発現の比較 (a): BSA群のOPNmRNAの発現量は対照群と比べて有意に上昇していた(*P<0.05)。(b): MCP-1mRNAの発現はBSA群 でのみ認められた。

総括

OMの糸球体および尿細管間質の自然発症病変の病理学的検索と、蛋白尿の軽減、増 悪による腎組織病変の変化の解析から、OMのTIIの発現・進展には糸球体障害による 蛋白尿が関連し、蛋白尿の加齢性の悪化と一致して尿細管障害、単核細胞浸潤は進行す ることが示された。また、間質への細胞浸潤は尿細管間質領域で発現するOPN、MCP-1 といったサイトカインの発現量の変化に関連し、これらの病変およびサイトカインの発 現は、蛋白尿を増減させることにより変化することが示された。このことから、OMの TIIでは、糸球体障害に起因する蛋白尿がTECの形質転換、サイトカインの発現を誘 導し、間質への細胞浸潤を惹起すると結論づけられた。 本論文を書き終えるにあたり、本研究テーマについての御討論、御指導、発表の機会 を与えてくださいました麻布大学病理学研究室、代田欣二教授に深謝致します。また、 本論文を御校閲頂きました同大学内科学第二研究室、土屋 亮教授、同大学附属動物病 院、斑目広郎準教授に厚く感謝致します。そして、本論文の作製にあたり、御討論して くださいました同大学病理学研究室、上家潤一講師に厚く感謝致します。

本研究は麻布大学生物科学総合研究所研究室における研究テーマの一環として行われたものであり、本研究において御討論、ご協力いただきました同研究室の皆様に感謝 致します。

最後に、私の研究生活を理解し、支えてくれた私の家族、友人に深く感謝します。

要旨

慢性糸球体疾患では、腎機能の低下やその予後は糸球体障害よりも尿細管間質障害 (TII)と強く相関することが示唆されており、TIIの抑制が腎機能保護にとって重要な治 療戦略と考えられている。TII は組織学的に 尿細管の萎縮、間質への単核細胞浸潤、 間質の線維化を包含し、腎組織の退行性変化とともに浸潤細胞、尿細管上皮細胞(TEC)、 筋線維芽細胞の相互作用によって間質線維化が進行する。糸球体病変に伴う TII は、従 来糸球体の機能廃絶の結果、付随する尿細管が萎縮し、周囲に二次的な炎症が引き起こ されると考えられてきたが、近年では蛋白尿自体が TII の原因または悪化因子として腎 不全進行を促進させることが示唆されており、病理生物学的に重要な因子として蛋白尿 が注目されている。

Osborne-Mendel 系ラット(OM)は、若齢より大量の蛋白尿を伴う糸球体障害を発症 し、他のラットに認める自然発症性慢性腎症に比べて進行がかなり早く、進行すると慢 性腎不全となることから、ヒトのネフローゼ症候群の慢性腎不全進行モデルとして期待 されているが、現在のところ尿細管間質病変の病理発生に関する研究は行われていない。 本研究は、OM の糸球体病変に続く TII の進行メカニズムと、糸球体病変および尿細 管間質病変の進展と蛋白尿との関連を探求することを目的とし、OM の進行性腎障害の 病理学的検索を行った。また、OM の TII の発生・進展には蛋白尿が関連していると仮 定し、アンジオテンシン変換酵素阻害薬(ACEi)、ウシ血清アルブミン(BSA)の投与によ り蛋白尿を軽減ないし増悪させ、尿細管間質障害の変化について考察した。 第1章 OM における進行性腎障害の病理学的検索

OM の病変の糸球体病変および尿細管間質病変は、進行の早いオスの 5 週齢から 20 週齢 を用いて病理学的に検索した。

24 時間蓄尿による尿検査では、総蛋白質量(TP)は7週齢以降、同週齢のメスよりも有 意に上昇した。尿の SDS-PAGE では、5 週齢からアルブミン(Alb)の分子量と一致した バンドを認め、10週齢でバンドは明らかに太くなり、また Alb よりも高分子のバンド を形成し、その後これらのバンドは加齢性に太さを増した。血清クレアチニン(Cre)値 は20週齢で雌雄間に有意差を認めた。組織学的に、糸球体は5週齢から足細胞の細胞 質内に硝子滴の沈着が認められた。また、ボーマン嚢と血管係蹄との癒着、糸球体硬化 といった硬化性病変は7週齢頃から観察され、その後加齢性に増加した。なお、糸球体 に炎症反応は認められなかった。 尿細管間質では 5 週齢から TEC の細胞質内に硝子 滴が認められ、13 週齡で大小の硝子滴が大量に沈着して TEC が膨化するほか、空胞変 性などの重度の病変が散見された。間質には5週齢から単核細胞が確認されたが、 著明 な細胞浸潤は、10週齢より観察された。その後、これらの病変は間質の線維化を伴い ながら加齢性に進展し、20週齢でびまん性に病変を形成した。免疫組織化学的に検索 したところ、尿細管は形態学的な変化に先行して 10 週齢よりマクロファージ(mφ)の 誘導因子であるとともに、TEC の障害マーカーとして知られる osteopontin(OPN)に陽 性を示し、13 週齢で OPN 陽性の尿細管数は有意に増加した。また、糸球体では肥厚し たボーマン嚢上皮細胞が陽性を示したが、足細胞、メサンギウム細胞は陰性であった。 浸潤細胞は5週齢からmø、T細胞、B細胞のすべてが散在性に浸潤しており、浸潤し

た細胞の主体は T 細胞で、10 週齢以降顕著に増加した。また、間質線維化の際に線維 芽細胞から形質転換する筋線維芽細胞について、 α -smooth muscle actin (α -SMA)の抗 体を用いて検索したところ、陽性細胞は 13 週齢から拡張した尿細管、ボーマン嚢周囲 に認められた。次に、TEC 障害と間質に浸潤した単核細胞の関連を検索するために、 最も強力な単核細胞のケモカインである monocyte chemoattractant protein 1 (MCP-1)と、m ϕ を誘導するサイトカインである OPN について、Laser microdissection 法を用いて切片から尿細管間質領域のみを採取し、リアルタイム PRC により OPN、 MCP-1のmRNA発現の定量解析を行ったところ、OPNmRNAは5週齢、MCP-1mRNA は 10 週齢から発現を認め、これらは加齢性に増加した。

以上の結果をまとめると、OM は観察を開始した 5 週齡で蛋白尿を発症しており、間 質には T 細胞を主体とした単核細胞の浸潤が起こっていることが確認された。尿細管 間質領域ではこれらの単核細胞を誘導する OPNmRNA が 5 週齡で発現しており、明ら かに細胞浸潤が増加した 10 週齡では OPN 陽性 TEC を認め、さらに MCP-1mRNA も 発現していた。TEC における OPN 発現は TEC の形質転換を意味し、これは硝子滴の 存在から尿蛋白質の過剰な再吸収によることが示唆された。形質転換した TEC からは OPN や MCP-1 のほかに、OPN の発現との関連が報告されている interleukin 1 (IL-1) や腫瘍壊死因子(TNF・ α)、また主要組織適合抗原(MHC・II)などが発現することが in vitro の実験によって示されており、これらも単核細胞浸潤に関連していることが推察 された。以上のことより、OM の TII の発症・進展には、蛋白尿による TEC の刺激が 関連している可能性が示唆された。

第2章 ACEi 投与による蛋白尿抑制時における尿細管間質の変化

第1章の結果から、蛋白尿を抑制すると尿細管間質病変は軽減されるという仮説を立て、OMにACEi(Lisinopril)を3週齢より飲水に混ぜて投与し、13、20週齢の糸球体および尿細管間質病変を検索した。

ACEi 投与により糸球体高血圧ないし過剰濾過の抑制を期待したところ、OM の収縮 期血圧は低下し、尿中の TP が有意に低下した。尿の SDS-PAGE では Alb の分子量に バンドが認められたが、それ以上の高分子蛋白質のバンドは形成されず、未処置群に比 べて有意に抑制された。投与群の血清 Cre 値は未処置群に比べて有意に減少した。組 織学的に、ACEi の投与によって未処置群にみられた足細胞における硝子滴の高度な沈 着、ボーマン嚢上皮細胞への癒着は有意に抑制された。 また、TEC の細胞質内に硝子 滴が認められたが、著明な形態学変化はなく OPN 抗体にも陰性であったが、間質には m φ、T 細胞がわずかに浸潤していた。尿細管間質領域における OPNmRNA の発現は 未処置群に比べて有意に抑制されたが、13、20 週齢ともわずかに発現していた。また、 20 週齢では MCP-1mRNA が発現していた。糸球体では、投与群はどちらの週齢も OPNmRNA、MCP-1mRNA の発現はなかった。

以上、蛋白尿の抑制による TII の変化から、尿細管間質領域における OPN、MCP-1 といったサイトカインの発現が蛋白尿によって誘導され、間質への細胞浸潤を惹起する ことが予想された。

第3章 BSA 投与による蛋白質負荷下における尿細管間質の変化

次に、蛋白尿を増悪させることを目的として、BSA を投与して糸球体に蛋白質負荷 を加え、自然発症よりも早期かつ重度に蛋白尿を発症させ、TII が発症、増悪するかを 調べた。BSA は 4 週齢より 3.5mL (1.0g/100g)を 3 週間腹腔内投与した。また、同時に BSA の腹腔内投与と ACEi (Lisinopril)の自由飲水による経口投与を併用した群(併用 群)、生理食塩液 3.5mL を腹腔内投与した群(対照群)を設定し、これらの病変と比較し た。

BSA のみを投与した群(BSA 群)の尿中 TP は対照群に比べて顕著に増加した。併用群 ではBSA 群と比べて有意に抑制されたが、対照群より高い値を示した。尿の SDS・PAGE では、対照群は Alb の分子量付近にバンドを形成したが、これより高分子のバンドは認 められなかったのに対し、BSA 群では Alb の分子量付近に血清よりも太いバンドが認 められ、また血清と類似した高分子のバンドを形成した。併用群では BSA 群と比べて 高分子のバンドは明らかに細くなったが、対照群と比べて太い Alb のバンドを形成した。 血清 Cre 値は 3 群間に有意差はなかった。組織学的には、対照群の糸球体にはほとん ど病変はなかったが、BSA 群で足細胞の高度な硝子滴沈着と、ボーマン嚢上皮細胞と 血管係蹄の癒着像を多数認めた。併用群では硝子滴の沈着した足細胞が散見されたが、 ボーマン嚢との癒着はほとんど認められなかった。なお、BSA 投与による糸球体の炎 症反応は観察されなかった。尿細管間質では対照群では TEC 内に硝子滴を認めるほか に病変はなかったが、BSA 群では尿細管の高度な拡張や TEC の空胞変性が散見され、 また間質に単核細胞の集簇、線維化を多巣状性に認められた。併用群では BSA 群より も病変は軽減し、間質には散在性に単核細胞の浸潤を認めたが、集簇巣や線維化はほとんど観察されなかった。また、間質に浸潤した単核細胞について免疫組織化学的に検索した結果、いずれの群においても $m\phi$ 、T 細胞、B 細胞の浸潤が確認されたが、BSA群、併用群では浸潤細胞の割合が対照群とは異なっており、 $m\phi$ が最も多く浸潤していた。尿細管間質におけるサイトカイン発現の検索では、対照群は OPNmRNA のみわずかに発現していたが、BSA 群では OPNmRNA の高度な発現に加えて MCP-1mRNA が発現していた。併用群の OPNmRNA の発現量は BSA 群に比べて減少したが、対照群より高い値を示した。また、MCP-1mRNA の発現は認められなかった。

以上の結果から、自然発症よりも強い糸球体障害を惹起し、より大量に糸球体から蛋 白尿が漏出すると、高度なTIIが引き起こされることが示された。

以上、OM の糸球体および尿細管間質の自然発症病変の病理学的検索と、蛋白尿の軽 減、増悪による腎組織病変の変化の解析から、OM の TII の発現・進展には糸球体障害 による蛋白尿が関連し、蛋白尿の加齢性の悪化と一致して尿細管障害、単核細胞浸潤は 進行することが示された。また、間質への細胞浸潤は尿細管間質領域で発現する OPN、 MCP-1 といったサイトカインの発現量の変化に関連し、これらの病変およびサイトカ インの発現は、蛋白尿を増減させることにより変化することが示された。このことから、 OM の TII では、糸球体障害に起因する蛋白尿が TEC の形質転換、サイトカインの発 現を誘導し、間質への細胞浸潤を惹起すると結論づけられた。

Summary

Chronic glomerular diseases, regardless of primary disease, lead to tubulointerstitial injury (TII) as a common complication. Close pathological analysis has revealed that functional impairment of the kidney correlated better with the degree of tubulointerstitial damage than with that of glomerular injury. Therefore, inhibition of TII is important treatment strategy for renoprotection. TII is histologically included tubular atrophy, mononuclear cell infiltration in tubulointerstitial fibrosis. Recently, a clear relationship between interstitial inflammation and fibrogenesis has been demonstrated.

Recently, proteinuria, develops in chronic renal failure, themselves may elicit proinflammatory and pro-fibrotic effects that directly contribute to chronic tubulointerstitial damage. Therefore, proteinuria becomes the focus of attention as the important factor pathobiologically.

Osborne-Mendel rat (OM) develops glomerulopathy with overt proteinuria in early life and the renal disease progresses into chronic nephropathy earlier than that in other laboratory rats. We assumed that the OM might be a suitable model for studying mechanism of progression of chronic renal failure from nephrotic syndrome. In chronic renal diseases, TII more significantly contributes to decreasing renal function than glomerular injury. There is no investigation about the pathogenesis of TII in OM.

In the present study, the author investigated the pathological features of TII and its relationship with glomerular injury or proteinuria on a progressive nephritis in OM. Furthermore, the author hypothesized that the pathogenesis of TII may be associated with proteinuria and two experiments were performed to investigate the relationship between proteinuria and TII.

Chapter 1: Pathological investigation of progressive nephropathy in OM rat

Male OM at various ages (5- 20 weeks) were used in this study. Urinalysis using 24-hour pooled urine revealed that the level of total protein significantly increased
more than that found in the age-matched females. In sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of urine, a band in the albumin (Alb) region revealed at 5 weeks of age. The band was obviously thickened and other bands of higher molecular weight appeared at 10 weeks of age. Serum creatinine (Cre) level was significantly increased compared with that found in the age-matched female at 20 weeks of age. Histologically, there were hyaline droplets in glomerular podocytes at 5 weeks of age. Furthermore, adhesion of the visceral epithelium to Bowman's capsule and segmental glomerular sclerosis were seen at 7 weeks of age. These lesions were age-related and obviously progressed at 13 weeks of age. No inflammation was occurred in the glomeruli during the observation. Hyaline droplets in tubular epithelial cell (TEC) cytoplasm were recognized at 5 weeks of age. Then, deposition of hyaline droplets in TEC cytoplasm and dilation of tubules were aggravated with age. TEC showed swelling and vacuolar degeneration at 13 weeks of age. At 5 weeks of age, mononuclear cells were scattered in tubulointerstitium. The number of mononuclear cells in the interstitium significantly increased at 10 weeks of age. Diffuse TEC injury and interstitial inflammation accompanied with fibrosis were recognized at 20 weeks of age. Immunohistologically, TII was semi-quantified by a marker of TEC injury (osteopontin: OPN), mononuclear cell infiltration (ED-1, CD3, CD45RA) and fibrosis (alpha-smooth muscle actin: α -SMA). OPN were expressed in TEC at 10 weeks of age prior to development of morphological changes and the positive TEC significantly increased at 13 weeks of age. In addition, hypertrophic epithelial cells of Bowman's capsule were OPN-positive but podocytes and mesangial cells were negative. Mononuclear cells in tubulointerstitium consisted of ED-1-positive cells, CD3-positive cells and CD45RA-positive cells at 5 weeks of age. Infiltrating cells were mainly T cells and influx of these cells was significantly increased at 10 weeks of age. a -SMA positive cell appeared around the dilated tubuli and Bowman's capsules at 13 weeks of age. Local mRNA expression of monocyte chemoattractant protein 1 (MCP-1), one of the most powerful mononuclear and dendritic cell attractants, and OPN, a macrophage chemotactic protein, in tubulointerstitial area was examined using dissected tissues by the laser microdissection system. OPNmRNA was expressed at 5 weeks of age. Meanwhile, MCP-1mRNA was expressed at 10 weeks of age. Then, both expression levels of mRNA increased with age. OPN expression means TEC transdifferentiation which might be caused by excess reabsorption of the urinary protein recognized as hyaline droplets in TEC cytoplasm. In *in vitro* study, transdifferentiated TEC expressed interleukin-1 and tumor necrosis factor alpha which were induced by OPN and major histocompatibility complex (MHC) class II. It was speculated that these cytokine and MHC antigen expression were associated with mononuclear cells infiltration in addition to OPN and MCP-1. In conclusion, the occurrence and development of TII might be associated with the stimulation of the tubular cells by protein in the urine.

Chapter 2: The alteration of tubulointerstitial injury by suppression of proteinuria using angiotensin-converting enzyme inhibitor in OM rat

From the conclusion of chapter 1, the author hypothesized that an inhibition of proteinuria reduces TII in OM. Therefore, the author examined the effect of anti-proteinuric treatment on glomerular injury and TII by administration an angiotensin-converting enzyme inhibitor (ACEi: lisinopril) in drinking water to OM from 3 weeks of age to 13 or 20 weeks of age. ACEi significantly reduced systolic blood pressure and proteinuria. In urine SDS-PAGE of the ACEi-treated group, a band in the Alb region appeared weakly. However, there were no bands of higher molecular weight. The serum Cre level of the treated group was significantly low compared to untreated group. Histologically, severe hyaline droplet formation in podocytes and adhesion of the visceral epithelium to Bowman's capsule were inhibited in ACEi-treated group. There were a few hyaline droplets in TEC cytoplasm and small number of macrophages and T cells were scattered in tubulointerstitial area in ACEi-treated group. No morphological changes and OPN were recognized. OPNmRNA was slightly expressed in positive cells tubulointerstitial area of ACEi-treated group, however, OPNmRNA expression was significantly reduced compared with that found in the age-matched untreated group.

70

Furthermore, MCP-1mRNA was slightly expressed in tubulointerstitial area at 20 weeks of age of ACEi-treated group. There was no expression of OPNmRNA and MCP-1mRNA in the glomeruli of ACEi-treated group. As the inhibition of proteinuria by ACEi treatment coincided with alleviation of TII, we expected that the cytokine expression such as OPN and MCP-1 was induced by proteinuria due to glomerular injury and these cytokines might induce mononuclear cells infiltration in tubulointerstitium in OM.

Chapter 3: The alteration of tubulointerstitial injury by protein-overload proteinuria in OM rat

To confirm the hypothesis that leaked urinary protein may play an important role in the pathogenesis of TII in OM, the author therefore injected OM with bovine serum albumin (BSA) to aggravate glomerular injury and proteinuria to see the modification of TII.

OM were assigned to three groups at 4 weeks of age; intraperitoneal injection (IP) of 3.5mL (1.0g/ 100g) of BSA (BSA group); 3.5mL (1.0g/ 100g) of BSA with 75mg/ L of ACEi in drinking water (BSA+ACEi group); IP of 3.5mL of saline (control group). All groups daily received the treatment for 3 weeks. BSA group developed overt proteinuria compared with control group. The level of urinary TP of BSA+ACEi group was lower compared with BSA group but the level was higher than that in control group. In urine SDS-PAGE, a band in the Alb region was stained weakly, however, there were no bands of higher molecular weight in control group. In BSA group, a band in the Alb region was obviously thicker compared with that in control group. Furthermore, the pattern of other band higher than Alb was resembled to that found in the age- matched serum. The bands in BSA+ACEi group were obviously thinner compared with that found in BSA group. There was no significant difference of serum Cre level among three groups. Histologically, control group developed few glomerular injuries, however, BSA group had severe hyaline droplet formation in podocytes and adhesion of the visceral epithelium to Bowman's capsule. In BSA+ACEi group, hyaline droplets in podocytes were recognized but

there was rare adhesion of the visceral epithelium to Bowman's capsule. In addition, there was no inflammation in the glomeruli. In tubulointerstitium, control group showed only hyaline droplet formation in TEC. In BSA group, however, there were severe dilation of tubular lumens and vacuolation of TEC. Furthermore, multifocal mononuclear cell infiltration and fibrosis were found in tubulointerstitium. These BSA+ACEi group were milder compared with BSA group. lesions in Immunologically, macrophages, T cells and B cells were infiltrated in tubulointerstitium in all groups. However, the infiltrating cells were mainly macrophages in BSA and BSA+ACEi groups. In control and BSA+ACEi groups, OPNmRNA slightly expressed in tubulointerstitial area, however MCP-1mRNA was not expressed. In BSA group, OPNmRNA expression was significantly higher than that in other groups and MCP-1mRNA was distinctly expressed in tubulointerstitial area. In conclusion, as protein-overload induced more severe glomerular injury, leaking larger amount of protein from the glomerular and severe TII than spontaneous injuries, urinary proteins might closely related to development of TII.

The results of this study suggest that TII in OM might be result from proteinuria due glomerular injury. The severity of proteinuria might be related to TEC transdifferentiation, tubular injury and cytokine expression such as OPN and MCP-1 in tubulointerstitial area. Influx of mononuclear cells in the interstitium might be related to the cytokine expression from the TEC by stimulation of urinary protein.

72