病原大腸菌 IC関する 細菌学的研究

―人·動物・その他自然界由来の病原 大腸菌とその血清学的性状を中心として―

大久保忠敬

(福岡市衛生試験所)

病原大腸菌に関する細菌学的研究

-- 人·動物・その他自然界由来の 病原大腸菌とその血清学的性状 を中心として ---

大久保忠敬

(福岡市衛生試験所)

目 次

第	Ι	章		緖		論												
第	I	章		石竹	究	材	料	及	. U"	研	宠	方	法					7
	第		節		λ	及	Zı"	各	種	動	物	糞	便	(含	陽	內	
					容)		各	種	沔	水	,	そ	9	他	自	烈	
					界	1=	お	计	3	病	原	大	腸	菌	9	分	布	7
	第	2	静		滷	原	大	腸	菌	の	選	択	的	增	菌	培	地	
					,	選	択	的	分	雜	琏	地	1=	関	す	3	検	
					討								- -					12
	第	3	節		滅	原	大	腸	菌	分	離	株	9	椞	剤	感	受	
					性	試	験	\										15
	第	4	静		浉	原	大	腸	窟	分	離	株	9	抗	原	分	析	17
第	\mathbb{I}	草		研	究	放	頹		<u></u>				. – – .					20
第	TT	章		考		察						- 1						36
第	∇	章		総	抬	及	. U"	結	論	7								49
第	A	草		文		献						,	_ ~ ~					55

第1章 緒 論

食品衛生の重要な目的は、安全でかつ無害 な食品を生産し、供給することにある。とり わけ、その中での食品と微生物,特に細菌と の関係は、細菌性食中毒、経口伝染病、変質 (腐敗、変敗)等に大きく関連し、食品衛生 上の重要な問題となっている。特に食中毒は ,食品の安全性と云う立場から見て,食性急 性病害の中で、経口伝染病と共に最も普遍的 で重要なものであり、その内細菌性食中毒は ,食中毒の中でも最も発生頻度が高く,重要 視されている。細菌性食中毒はその発生機序 から見て、サルモネラヤ腸炎ビブリオ等の感 染型、ブドウ球菌やボツリヌス菌等の毒素型 又セレウス菌や腸球菌等の中間型の3型に 分類されている。この感染型の一っにここ数 年来重要視されてきた病原大腸菌がある。

そもそも大腸菌(Escherichia coli)は人や動物の腸管内に正常菌叢の一種として常在し、

要があると指適されているか。

大腸菌の起病性に関する歴史は古く、1897年Jensenが仔牛の白痢症(white scours)の原因を大腸菌によると述べたことが満足であると述べたことが満足で、Adamの大腸菌による乳切り、今日の病原大腸菌と云り根毒に変のものと思めれる。その後Adamの報告に対して1933年Goldschmidtは、最初に乳幼

児胃腸炎由来の大腸菌を血清学的, 疫学的 K 追究したが,両者の業績は世の注目なくして 葬られていた。1945年Bray®)の乳幼児胃腸炎 の細菌学的研究報告によって、乳幼児胃腸炎 と大腸菌との関係に大きな反響を呼び,上記 両者の業績も日の目を見るようになった。す なめちBrayは、英国のMiddlesexのある病院で 乳幼児胃腸炎の流行の折,当時の大腸菌の分 類で "Bacterium coli neapolitanum" を多数の 患者より検出し、この菌を原因菌と推測した 。 二九二次以でVarela ら 78), Giles ら 19), Smith 49) , Taylorら 等による同様な報告があるが, Kauffmannを中心とした北欧学者による大腸菌の 血清学的分類は, 病原大腸菌の 党明に寄与し たことは大きい。

かくして1950年以降,多くの研究者によって乳幼児下痢症及び胃腸炎を中心として病原大腸菌の検索が行なめれ,1972年までに18種ム毒型が報告土れるに至ったが,最近更に約10種の新しい血清型が追加検討されつつあるが。

乳幼児胃腸炎由来の病原大腸菌は、児童、 成人にも起病性が認められる。我国では乳球に 足しととなるで保育される。 に大きな社会問題になる様なが、 に大きなない。 り見られなりの海になり、病原大腸菌の研究は主として は、病原大腸菌の付られてきた。 を関いが向けられてきた。 を関いが向けられてきた。

人の病原大陽菌の中には,人に起病性を示すばかりでなく,牛の乳房炎(4.15.47),仔牛 20.45.44.24) まばかりでなく,牛の乳房炎(4.15.47),仔牛 (50),仔豚 の下痢あるには敗血症等にも関係し、起病性に人獣の共通性が認められるのもある。

第耳章 研究材料及び研究方法

第1節 人及び各種動物糞便(含腸内容), 各種汚水, その他自然界における病 原大腸菌の分布

こ数年来,人を中心に病原大腸菌の自然。 界にかける疫学調査について報告され ア神一腸炎患者は勿論,既知病原大腸 菌の健康人における保菌状態,検出菌の型別 も暫時担建されつっあるが,本菌の語染源, を暫時超についるが,本原細菌と同様 であるとこれではいるが,現在なお明確 であるい。

第 | 項 研究材料

1967年8月から1970年2月に由た3期間において、病原大腸菌の疫学調査を試み、資料として人309例、牛88例、馬23例、豚735例、愛玩犬60例、野犬156例、鶏214例、猫5份例、家至11例の各糞便、双で長崎中内の河川水90例、長崎港湾海水48例、課中市郊外の井戸水40例、長崎県内の浄化槽放流水30例、長崎市屠畜場內污水66例、同廃水60

例, 表崎県内の養殖及心天然力キ17例, 市販 カキ24例,合計2,041例について実施した。人 , 馬, 野犬, 鹎, 緬羊及び家をの糞便は可及 的新鮮なものを選び、牛、愛玩犬、猫の糞便 は直腸より直接採集した。豚は屠畜場にお" て直腸内容を可及的二次汚染のない様に採集 した。これら2,041検体中, 長崎市屠高場にか け3豚の盲腸内容460例, 屠蝎内污水66例, 同廃水的例については、一定件数の検体を月 々採集し, 本菌出現の季節的推移についる検 討した。更に豚盲腸内容においては, 内容物 を正常内容と水様性内容とに区別し、腸内容 1g又は1ml中における大腸菌群数を計数し, 本菌出現と大腸菌群の量的関係について検討 UE.

第2項 研究方法

1. 生物学的性状試験

各々の資料を普通ブイヨン(栄研)にて増 菌培養(37℃,5~6時間)後,Desoxycholate寒 天暗地(栄研)によって分離培養(37℃,20~24時間)し、大腸菌と思めれる集落を釣菌して、Coli-aerogenes subcomittee(1956)による分類法並びに一般生物学的性状検査法に従って同定した15,044株の大腸菌につき病原大腸菌の検索を行なった。

2. 血清学的試験

從来病原大腸菌の血清学的同定に使用する 抗血清は,研究者が独自に作成し、その血清 によって、分離菌の凝集価を測定し、その凝集 内容によって同定するのが慣例で、その判定 には肉眼的に明確な凝集価が免疫菌の凝集価が の%以上と現行の方法ではされている56)。 かしこの方法によると、各自か作成した免疫 血清の凝集価は一定でなく、従って凝集価の 結果が相互に比較できない等の問題があると 思われたので、著者は市販の免疫血清(東芝 生研)を使用し、血清の凝集価を東京都衛生 研究所より分与された病原大腸菌標準株(EI ~E18) で測定し、分離菌の試験管内定量凝集

反応を行ない, 上下一管法採用による同定法で実施した。

その結果大腸菌と同定された株について、次の方法で病原大腸菌の血清型別を行なった。

- (a) 生菌をスライドがラス上でOK混合血清でためし凝集反応を行ない、30秒前後以外で強く凝集したそのについこは、これに該当するOK因子血清で同様凝集反応を行なった。
 - (b) (d)にて陽性のものについて更に生菌にての血清で凝集反応を行ない、K抗原の有無を確かめた。
- (C) (b)にてまったく凝集を起せないか、又は微弱な凝集を起すせのについては、プイコン培養(37°C、15時間)したせのを100°C、60分加熱し、この0.5mlに当該0血清の一滴を摘下し、試験管内凝集反応(50°C、一夜)を行ない、肉眼的に明確に凝集の認められたせのについて定量凝集反応を行なった。
 - (d) K抗原の定量にはプイヨンで培養(37° と、15時間)した生菌を抗原とし、OK 血清

で試験管内定量凝集反応(37°Cにて2時間感作後が暗所に一夜靜置)を行なった。 図を 100°C か に 7 では養した 菌変を 100°C か に 7 では 100 と 10

第2節 病原太腸菌の選択的增菌培地,選択 的分離培地 L 関する検討

病原大腸菌の同定は現在血清学的方法のか によって行なかれ、生化学的性状による同定 法では、一般の大腸菌と本菌を区別すること はできない。従って本菌の選択的分離培地の 必要性が痛感之れ、追試及び検討を試みた。

Ramirez ら は一般大腸菌人由来 22株, 及 2" 病原大腸菌7種血清型33株を用いて実験し, 一般の大腸菌と病原大腸菌との間にdihydrostreptomycin sulfate (以下DHSと略記)に対す 3 有意な感受性の差をみいだした。その結果 DHS 色添加したブイヨンとMacConkey 寒天培 地(以下Mc培地と略記)を組み合めせる用い りば、子供からの直接採便の様な菌数の少な い場合でも,高率に本菌を選択的に分離でま 3と報告し注目された。著者は追試実験をか ゆて病原大腸菌標準株 1P種血清型 1→株, 病原 大腸菌分離株14種血清型114株を中心に、人 糞便由来, 河川水由来及び豚糞便由来の一般 大腸菌を使用し、培地に各種濃度のDHSを添 加レフ、これらの菌の発育状態を観察した。 又Ramirezらは増菌培地としてブイヨン(ペプ トン0.5%, 牛肉エキス0.3%, 食塩0.8%, 蒸留 水(l)を使用しているか、著者は大腸菌群の 増菌培地であるLB, BGLB, EC 各培地と普通づ

イヨンについて検討した。

第一項 病原大腸菌分離に及ぼすDHSの選 択的効果

使用した病原大腸菌は東京都衛生研究所分 与株18種血清型14株,病原大腸菌分離株14種 血清型114株,又一般大腸菌としてIMViCに で確認した人糞便由来104株,河川水由央62 株及び豚糞便由来110株を実験に供した。

第2項 病原大腸菌のDHS 添加増菌培地に おける所見

供試株は人糞便由来一般大腸菌20株,東京都衛生研究所分午病原大腸菌18株及21病原大腸菌18株及21病原大腸菌分離株1/4株である。

増菌培地として市販の普通ブイヨン, LB, BGLB, EC各培地(栄研)にDHSの各種濃度を添加し、更に500m/ml前後の菌を接種し、37° c, 20時間培養後の各ブイヨン | ml中にかける菌数を計数し、発育状態を見た。そので、20時間おし、発育状態を見た。そので、20時間なり、20時間は、20時間は、20時間は、20時間は、20時間は、20時間は、20時間は、20時間は、20時間は、20時間は、20時間は、20時間は、20時間は、20時間では、20

第3節 病原大腸菌分離株の薬剤感受性試験

今日, 抗生物質等の濫用で腸内細菌の耐性化, 特に多剤耐性菌の出現, 及び食肉や乳製

品を介して人体への抗生物質等の移行が大きな社会問題となっている。DHS添加培地による実験において人、河川水、及び豚由来のの般大腸菌においてかなり感受性に対したる種動物、その他自然界より分離された本菌の薬剤感受性について検討した。

第一項 研究材料

各種資料 より 分離さ れた病原 大腸菌 15種血 清型 187 株を供試 した。

第2項 研究方法

被検菌を普通ブイヨンにて37℃, 一夜培養した菌液 | mlを, 奥に普通ブイヨン10mlに投入し、4~5時間培養したものを Heart Infusion塞天培地(栄研)に | ml ピパットにて一滴消下(10^{6~7}3)し、滅菌コンラージ棒にマ平等に全抹、乾燥後、各種の抗生物質を含む Disc を平板上に軽く乗せ、室温に | 時間放置後 37℃

「こて一夜暗養し、生じた阻止円の直径を計測して感受性の程度を判定した。使用した抗生物質は「濃度(昭和薬品)の Disc で Tetra cycline (T), Demethylchlortetracycline (Td), Oxytetracycline (O), Chloramphenicol (d), Colistin (K), Streptomycin (S), Polymyxin B (Xp), Kanamycin (Ka), Paromomycin (H)の9種である。なお感受性の程度を冊: まめめて感受性, サ:かなり感受性, ナ:やや感受性, 一:
耐性の4種に区別し表記した。

第4節 病原大腸菌分離株の抗原分析

人及び各種動物の糞便,各種汚水,名の他自然界を対象に病原大腸菌の疫学調査を行達した。 自然界を対象に病原大腸菌の変質がなり、本菌と同定とがらがはまます。 した。したのののでは、これのかないでは、本種にした。 を使用したのであるは、これののないであるが、 を検展でいてある。 にてあるかによるが、 にてあるかによるが、 になるるかに、これらか離菌が人 の下痢一腸炎, あるいは食中毒由来の本菌の 〇抗原, K抗原及び抗原構造が完全に一致するか否かという点に疑点が残まれる。

第1項 研究材料

病原大腸菌分離株15種血清型の中より0-111: K58(B4) 牛由来, 0-112a.c: K66(B11) 豚由来, 0-125: K70(B15) 人由来, 0-128: K67(B12) 豚由来 、0-136: K78 (B22) 猫由来の5株をもって各々 家免免疫血清を作成した。

第 2 項 研究方法

各々作成土れた家免免疫血毒を, それぞれの病原大腸菌標準株での及び长抗体菌が水水を発動を 小吸収し, これら吸収血毒にて分離菌を, 社会 清型57株の試験管内定量凝集反応を行ないる が大変を見た吸収血毒になるが、100 が大変をした吸収血毒になる。 が大変を がたる が大変を が

第Ⅲ章 研究成績

第1節 人及び各種動物糞便(含腸内容), 各種汚水, その他自然界における病 原大腸菌の分布

各資料の検体数、大腸菌株数、病原大腸菌 陽性検体数及びその検出率,病原大腸菌株数 及びその検出率を表1に示した。総計2,041の 検体より15,044株の大腸菌を分離し、そのう 5本菌陽性検体数は109例(5.3%)で,15種 血清型187株(1.2%)の病原大腸菌が検出さ 水た。このうち長崎市屠畜場における豚の盲 腸内容, 同場内当水及び廃水から検出された 本菌73株を除く114株の各種生化学的性状は 表2及び表3に,分離菌15種血清型187株の 血清学的分類は表チにそんざれ示した。各検 体より検出せれた187株の内訳は0-112a.c:K66 (BII)が29株 (15.5%), 0-128:K67(BI2)が28株(15.0%), 0-136:K78(B22)が21株(11.2%), 0-125:

K70(B15)が20株(10.7%),0-26:K60(B6)が18株(9.6%),0-111:K58(B4)が16株(8.6%),0-127a:K63(B8)が12株(6.4%),0-143:KX1(B)が11株(5.9%),0-28a.c:K73(B18)が10株(5.3%),0-86a:K61(B7)が7株(3.7%),0-55:K59(B5)が5株(2.7%),0-124:K72(B17)が4株(2.1%),0-119:K69(B14)が3株(1.6%),0-126:K71(B16)が2株(1.1%),0-46:K62(4)が1株(0.5%)であったが,0-44:K74(4),0-144:KX2(B)及び0-146:K89(B)は検出されなかった。

人における本菌の検出状況は、児童、成人を含む309名中川名(3.6%)で、6種血清型19株(1.6%)が検出された。その血清型は、0-86a: K61(B7)(26.3%)、0-127a: K63(B8)(21.5%)、0-119: K69(B14)、0-125: K70(B15)及び0-143: KX1(B)(各15.8%)、及び0-124: K72(B17)(5.2%)であった。

各種動物における本菌検出状況は, 牛88例中陽性数は7例(29%)で0-//1:K\$8(B4)(81.2%), 0-127a:K63(B8), 0-112a.c:K66(B/1) 及ひ0-/28:K67(B/2)

(各6.3%)の4種血清型16株, 豚735例中陽 性数は46例(6.3%)で0-112a.c:K66(B11)(29.4%). 0-136:K78 (B22) (25.0%), 0-26: K60 (B6) (20.6%), 0-128: K67 (B12) (10.3%), 0-125: K70 (B15) (7.4%), 0-28a.c: K73 (B18), 0-55: K59 (B5), 0-86a: K61 (B7), 0-126:K71(B16)及び0-143:KX1(B)(各1.5%)の10 種血清型68株,野犬156例中陽性数は11例(7.1%) で 0-143: KX,(B) (36.8%), 0-128: K67(B12) (31.6%), 0-55: K59 (B5) (15.8%), 0-112a.c: K66 (B11) (10.6%), 及び0-86:K62(L)(5.3%)の5種血清 型19株,猫56例中陽性数は10例(17.9%)での 28a.c: K73 (B18), O-128: K67 (B12) (各30.4%), O-III: K\$8(B4), 0-136: K78(B22)(各13.0%), 0-125: K70 (B15) (8.7%),及210-26:K60 (B6) (4.4%) の6種血清型23株かそれぞれ検出された。

河川水90例中陽性数は2例(2.2%)で0-/25: K70(B15)及び0-128:K67(B12)の2株, 海水48例 中陽性数は1例(2.1%)で0-128:K67(B12), 浄 化槽放流水30例中陽性数は1例(3.3%)で0-127a:K63(B8), 屠場内汚水66例中陽性数は9 例 (13.6%)で 0-112a.c:K66(BII), 0-125:K70(BI5) (各19.0%), 0-128:K67(B12)(14.3%), 0-26: K60 (B6), 0-124: K72 (B17), 0-1272: K63 (B8) (各9.5%), 0-28a.c:K73(B18), 0-55:K59(B5), 0-126:K71 (B16)及び 0-136:K78 (B22) (各4.8%)の 10種血清型21株, 屠場廃水60例中陽性数144 例 (6.7%) で 0-112a.c: K66 (B11), 0-125: K70 (B15) (各20.0%), 0-26:K60(B6), 0-28a.c:K73(B18) , 0-86a: K61 (B7) , 0-124: K72 (B17) , 0-127a: K63 (B8) 及びか128:K67(B12)(各10.0%)の8種血清型10 株, 市販カキ24例中陽性数はク例(29.2%)で 0-125: K70(B15), 0-127a: K63(B8)(各42.9%), 0-128: K67 (B12) (14.3%)の3種血清型ク株がそ れどれ検出された。

本研究において本菌が各種の検体より同様に検出された。即ちの-128:K67(B12)は牛,豚,野犬,猫,河川水,海水,屠場內汚水,屠場際水及び市販カキ,の-125:K7の(B15)は人,豚,猫,河川水,屠場內汚水,屠場廃水及び市販カキ,の-127a:K63(B8)は人,牛,浄化槽放流

水、屠埸内污水,屠埸廃水及心市販力丰,0-112a.c: K66(B11)は牛,豚,野犬,屠場內污水及 2°屠場廃水, 0-143:KX,(B)は人, 豚及び野犬, 0-26:K60(B6)は豚及び猫, 0-111:K58(B4)は牛 及び猫からそんぞれ検出されたが、人からの み検出せれた本菌は0-119:K69(B14), 野犬から のみは0-86:K62(4)であった。又脈3例,野犬 2例、猫2例において同一検体より2種の本 菌が同時に検出された。即ち豚では0-1/2q.c:K 66 (BII), 0-125: K70 (BIS) Nº 2 131 ; 0-55: K59 (BS) , 0-128:K67(B12), 野犬ではO-86:K62(L), 0-128: K67(B12); O-55:K59(B5), O-128:K67(B12), 猫で 17 0-26: K60 (B6), 0-136: K78 (B22); 0-111: K58 (B4), 0-128:K67(B12)であった。

常内容における本菌出現の季節的推移につい て見 ると、月別の検定では存意な差を生 じないが、表7に示すごとく四季別による検 定では、春から初夏(3月~5月)にかけて 本菌検出率がかなり高い傾向か見られたか, 食中毒シーズンである夏から秋にかけては逆 にほとんど本菌を検出することができなか。 た。一方水様性内容においては、月別及び四 季別による検定で有意な差は認められなかっ た。屠場内汚水からの本菌検出については表 8に示すごとく、7月へよ月の食中毒シース" ンか21.6%と最も高く、次ぃで1月~2月の 18.2%, 以下4月~5月911.1%, 10月~11 月の8.7%であり、屠場廃水については表りに 示すごとく, 屠場内汚水と同様ク月~8月か 13.3%と最も高く,次いで4月~5月,及び 1月~2月が各6.7%で、10月~11月は本菌は 検出されなかったか、廣場内汚水及が廃水に おいては,年間を通じてかなり高い検出率で あった。

豚の正常直腸内容及び水様性直腸内容にか いて、釣菌した範囲で本菌陽性内容と陰性内 容とに一応区別し、その1g又は1ml中の大腸 菌群を計数し,その月々の菌数を10g10に変換 し、その合計を表し及び表11に示した。その 結果正常内容あるいは水様性内容において. 本菌陽性内容が陰性内容に比較して大腸菌群 数が多く(Pく0.001),又本菌陰性内容におり いては, 水様性内容が正常内容より大腸魚群 数が多かった(P<0.00/)が、本菌陽性内容は 1= おいては、正常内容と水様性内容における 大腸菌群数の有意な差は認められなかった。 又月々の正常内容と水様性内容の大腸菌群数 の関係は7月(Pく0.05)、9月(Pく0.05)。 11月(P<0.05)及び1月(P<0.01) に</p> おいて水様性内容の大腸菌群数が正常内容と りも多かった。本菌陰性内容の正常内容にか ける月々の大腸菌群数は3月がどの月よりも 、11月及び12月か5月、6月、7月及び9月 よりも、各月がク月及び9月よりもぞれぞれ

大腸菌群数が多く、一方本菌陰性の水様性内容においるは3月が5月、6月、8月、10月及び12月よりも、11月が5月、6月及び10月よりも、1月及び6月よりも、1月及び6月よりも、1月及び6月よりもくの05又は0.01)。

第2節 病原大腸菌の選択的増圉培地, 選択 的分離培地に関する検討

第1項 病原大腸菌分離に及ぼす DHSの選 択的効果

病原大腸菌標準株18株と病原大腸菌分離株114株についてMc 培地にDHS を各種濃度添加し、その発育状態を観察した。その結果表12に示すごとく標準株の0-26:K60(B6)、0-28a.c: K73(B18)、0-44:K74(L)、0-86:K62(L)、0-111:K58(B4)、0-119:K69(B14)、0-124:K72(B17)、0-125:K70(B15)、0-126:K71(B16)、0-127a:K63(B8)、0-136:K78(B22)、

O-144:KX2(B)及び O-146:K89(B)は 良好な発育を示 U t= ", 0-55:K59 (B5), 0-86a:K61 (B7), 0-112a.c: K66(B11), 0-128: K67(B12) 及 2 0-143: KX, (B) 1 由 ずかなからDHSに発育が抑制された。又病原 大腸菌分離株について同様実施したところ, 表13に示すごとくMc培地上において、DHSを 10/19:/ml添加した場合でも約90%の菌が良好 を発育を示した。これを血清型別にみると, 表14に示すごとく0-26:K60(B6),0-28a.c:K73(B18) , 0-55: K59 (B5), 0-86: K62 (L), 0-864: K61 (B7), 0-111: K58 (B4), 0-119: K69 (B14), 0-124: K72 (B17), 0-1274: K63 (B8), 0-128:K67 (B12), 0-136:K78 (B22) B Q" 0-143:KX, (B) は良好な発育を示したが、0-112a.c:K66 (B/1) 及び0-125:K70(BIS)はめずかなからDHSに発育 が抑制された。

人糞便,豚糞便及び河川水由来の一般大腸菌を各種濃度のDHSを添加したMc培地に培養し、その発育状態は表にに示すごとく、人由来の大腸菌にかいこはDHSを4~M·/ml添加したMc培地で42.3%、6~Mg·/mlで76.0%、8~Mg·/mlで76.0%、8~Mg·/ml

第2項 病原大腸菌のDHS添加増菌培地に おける所見

Ramirezらは増菌培地としてブイヨン(パプトン5g, 肉エキス3g, 食塩8g, 蒸留水1l)を使用し、DHSを各種濃度に添加して実験した結果、ブイヨンにおいてDHSを3~1g/ml以下を添加した場合、病原大腸菌と一般大腸菌との間において感受性の有意な差は生じなが、DHSを4~1g/ml添加した場合には、病原大

腸菌株の中にはある程度発育を抑制される菌 株もあるか、一般大腸菌との間には有意の差 が明確に認めらんたと報告している。著者は 各種市販の大腸菌群増菌帝地及び普通ブイヨ ンを使用して、DHS を各種濃度に添加して. DHSに対する両者の感受性の差を観察し、選 択増菌培地としての価値について検討した。 その結果表16に示すごとく、BGLB培地にDHS を1 Mg·/me 添加 した場合, まったく有意な差 は認められない。2 Mg/ml では病原大腸菌標 準株は18株中13株のみ発育した。LB培地にお こは | Mg/ml 添加しに場合でも病原大腸菌 の発育が悪く、EC培地においてはらMg./mlで 病原大腸菌は18株中16株(88.9%)発育した か,一般大腸菌もなる発育し,両者間に有意 字差は生じなかった。しかしなから普通ブイ ヨンにおぃ2は、4 Mg·/ml で病原大腸菌はEC 培地と同様88.9%の菌が発育し、一方一般大 腸菌は60%発育が抑制された。しかしRamire2 らの一般大腸菌にかける90%以上の抑制力(

DHS同濃度)には及ばないが、使用した増園 培地の中では存意な差か認められた(PくO.OS)。 以上の成績から、人糞便及び水系の資料から本菌を検索する場合には、DHSを449·/ml 添加した普通づイヨンと、4及び849·/ml 添加したMc培地を併用すれば、多少DHSに影響 を受ける本菌株があるにしても、従来の本菌

第3節 病原大腸菌分離株の薬剤感受性試験

分離法に比較すりば分離率の上昇か期待でき

3.

各種資料より分離された本菌15種血清型187株の各種抗生物質に対する感後性試験の成績は表17に示し、又血清型別と耐性菌の出現状況を表18に示した。耐性菌の内訳は5種薬剤に耐性を示したものは12株(6.4%)、4種薬剤に耐性を示したものは18株(9.6%)、2種薬剤に耐性を示したものは18株(9.6%)、2種薬剤に耐性を示したものは11株(5.9%)、種薬剤に耐性を示したものは11株(5.9%)、

1 種業剤にかみ耐性を示したものは39株(20.9%)であった。

耐性菌を薬剤別に見ると、供試菌187株中丁に耐性のもの31株(16.6%)、Tdに耐性のもの30株(16.0%)、Oに耐性のもの33株(17.6%)、Cに耐性のもの12株(6.4%)、Kに耐性のもの48株(25.7%)、Xpに耐性のもの4株(2.1%)、Kaに耐性のもの1株(0.5%)、Pに耐性のもの4株(2.1%)、Kaに耐性のもの1株(0.5%)、Pに耐性のもの3株(1.6%)であった。

特に耐性菌の多かったそのは豚山来の0-26: K60(B6) (T, Td, O, Sに耐性), 牛由来 の0-111:K58(B4) (Sに耐性), 豚由来の0-1/2q.c :K66(B11) (T, Td, O, Sに耐性), 猫由来 の0-136:K78(B22) (Sに耐性), 人及び大由来 の0-143:KX1(B) (Sに耐性)等であった。

以上9種葉剤中C, K, Xp, Ka, 及びHに対してはまりめて強い感受性を示したか,下系薬剤(T, Td, O)及びSに対しては中等度の感受性を示した。分離株のうち別株(43.3

%)がいずれかの繋削に対して耐性で、特に Sに対して耐性のものか多く、病原大腸菌と してはこのS(Streptomycin)耐性を重要視す べきものと見受けられる。

第4節 病原大腸菌分離株の抗原分析

各吸収血清による病原大腸菌分離株57株の 試験管内定量凝集反応の成績は表19に示した 。 0-111:K58(B4) 16株について; K 凝集反応陰 性のもの8株、3×のもの2株、6×のその 2株、12Xのもの4株であった。0凝集反応 陰性のもの2株、10×のもの4株、20×のも の6株,40×のもの4株であった。0-112a.c:K 66(B11) 4株について; K 凝集反応陰性のも の1株,6×のもの1株,12×のもの1株, 24×のもの1株であった。0凝集反応陰性の ものはなく、10×のもの3株、40×のもの1 株であった。0-125:K70(B15)14株について;K 凝集反応陰性のもの5株、3×のもの3株、

6×のもの5株, 12×のもの1株であった。 0凝集反応陰性のもの7株, 10×のもの6株, 3株についた。0-128:K67(B12) 3株についた。0-128:K67(B12) 3株についた。0-128:K67(B12) 3株についた。0-128:K67(B12) 3株についた。0-128:K67(B12) 3株についた。0-128:K67(B12) 3株についた。0-128:K67(B12) 4のたった。0-128:K67(B12) 3株についた。0-128:K67(B12) 4のたった。0-128:K67(B12) 4のたった。0

以上0-III: K58(B4)においては、 O抗原, K抗原共に凝集反応陰性のものは 16株中 2株原/2.5%)、 0-II2a.c: K66(BII) においては、 O抗原, K抗原共に凝集反応陰性のものはなか、た。 0-I25: K70(BI5) においては、 O抗原, K抗原共に凝集反応陰性のものは A株中 5株 (35.7%)、 0-I28: K67(BI2) においては、 O抗原, K抗原共に凝集反応陰性のものは 3株中 3株(100%) であり、 0-I36: K78(B22) においては、 O抗原, K抗原共に凝集反応陰性のものはなか、た。

以上供試菌57株中, O抗原, K抗原共に凝集反応陰性となったものは57株中10株(17.5%)であったが、凝集反応が陰性でなかった株は、標準菌株のO抗原及びK抗原に比較し、抗原の一部にりずかなから相違が見られた。

第Ⅳ章 考 察

病原大腸菌はここ10数年来, 諸研究者によって人を中心にその疫学調査が実施さればら26.53. 我国の人における本菌の分布について色々と報告されているか, 著者の人における本菌の分離状況調査では0-862: K61(B?), 0-/27a: K63(B8), 0-/19: K69(B14), 0-/25: K70(B15), 0-/43: KX1(B), 0-/24: K72(B17)の順であったが, かよそこれまでの報告例とほぼ同様な結果が得られた。

又人以外にかける本菌の分布につりて動物 9.12.51.52.55.82.85)、水⁵⁸⁾、各種食品^{40.80)}等には稀少

ではあるが、分布すると云う報告も見られる 。本園の疫学調査において牛ょりの111:KS8(B4) , O-127a: K63 (B8), O-1/2a.c: K66 (B11), O-128: K67 (B 12), 脉 より 0-112a.c: K66 (B11), 0-136: K78 (B22), 0-26: K60 (B6), 0-128: K67 (B12), 0-125: K70 (B15), 0-28a.c: K73 (B18), 0-55: K59 (B5), 0-86a: K61 (B7), 0-126: K71 (B16) , O-143:KX,(B), 野犬 より O-143:KX,(B), O-128:K67(B 12), 0-55: K59 (B5), 0-1/2a.c: K66 (B11), 0-86: K62 (L), 猫ょりの-28a.c:K73(B18),の-128:K67(B12),の-111:K58(B4) , 0-136:K78(B22), 0-125:K70(B15), 0-26:K60(B6)の川負 で, 河川水より0-125:K70(BI5),0-128:K67(BI2),海 水より0-128:K67(B12), 浄化槽放流水より0-127a:K 63(B8), 曆場內污水より0-112 q.c: K66(B11), 0-125: K70 (B15), 0-128:K67 (B12), 0-26:K60 (B6), 0-124:K 72 (B17), 0-1277: K63 (B8), 0-282.c: K73 (B18), 0-55: K\$9(B\$), 0-126:K71(B16), 0-136:K78(B22), 居場際水 \$ 1) 0-112a.c: K66 (BII), 0-125: K70 (BI5), 0-26: K60 (B6), 0-28a.c: K73 (BI8), 0-86a: K61 (B7), 0-124: K72 (BI7), 0-127a: K63(BA), O-128: K67(B12), 布販カキよりO-125: K70(BIS), 0-127a:K63(B8), 0-128:K67(B12)の明真で

行れざれ本菌が検出され、各種動物、汚水, 食品、その他自然界にもかなり分布(2)3 ことが何之な。

以上人及び各種動物,汚水,食品,その他自然界より15種血清型187株の本菌を分離し得たが,特に分布率の高かったものは,動物及び人で猫,牛,野犬,豚,人の順であったが,人及び動物以外においては市販カキ,屠場外汚水及び廃水,浄化槽放流水,河川水,海水の順であった。これを血清型別に見るとの1124.c: K66(B11),0-128: K67(B12),0-136: K78(B22),0-125: K70(B15),0-26: K60(B6),0-111: K58(B4),0-1273: K63(B8),0-143: KX1(B),0-284.c: K73(B18),0-86: K61(B7),0-55: K59(B5),0-124: K72(B17),0-119: K69(B14),0-126: K71(B16),0-86: K62(L) の順であった。

一方本菌食中毒や下痢症として0-124: K72(B17) を筆頭に0-44: K74(L), 0-128: K67(B12)と数多くの 報告3.5.7.12.17.23.24.28~31.37.41.43.59~62.67.71.75.77.83) がこれまでに見受けられるが、この中で特に0-128: K67 (B12)にかいては、疫学調査において、同じ抗

原型の菌がどの種の材料からも多数検出され 又同様な報告。もあり、本菌は人及び自然 界に広く分布していることが伺える。東に食 中毒や下痢症時における検出頻度はあまり高 くはないが、これらの抗原型と同型の本菌が 人、動物及び自然界の種々な材料より数多く 分離されることは公象衛生土重要視しなけれ ばならない。しかしるから0-124:K72(B17)中044: K74(L)においては、我国の食中毒や下痢症に おいて最も多く検出される血清型53.56)である にも拘らず、本菌検索において健康人や動物 、その他自然界からほとんど本菌血清型は検 出さんなかった。この種の報告はEwing(2)や失 挽ら によっても見受けられることから、病 原大腸菌の自然界における生態は,全般的に はサルモネラと同様な分布状況を示すそのか 多いか,一方その中には0-124:K12(B17)や0-44: K74(L) のごとき血清型には一種の宿主特異性 か認められ、これらの菌の移動は下痢一腸炎 患者を中心に、人から人へとえった菌の移動

が推測される。又未知の病原大腸菌による下海一食中例 2.4.42.44.63~67.8%.86) き 最近かなり 見受けられ,一汚染源あるいは一媒介者としてのこれらのものは、本菌疫学上軽視できない問題である。

本菌検出の季節的消長を屠場豚について調 査した結果では, 正常盲腸内容においては春 から初夏(3月~5月)にかけて本菌検出率 が他の季節に比べかなり高かった(P < 0.05) 天挽らかの成牛においての結果では、11月 ~12月の材料で26.9%,5月~7月の材料で 4.5%を示したと云う。一方健康な乳幼児にお いては, 本菌検出の季節的な変動はあまり認 められないと云う報告がや、一般健康成人に おいては夏期が高かったと云う報告がもあり ,人及び動物における本菌の季節的出現の推 移については未だ明らかではない。週去5年 間にかける本菌食中毒発生状況を見ると、本 箇による散発下痢一食中毒は年中発生してお り、現状においては、人及び各種動物からの

本菌検出と本菌食中毒発生との関連性は認められないように思われる。

本研究において、人及び各種動物、その他 より数多くの病原大腸菌が検出されたが、本 菌の臨床像から見た区別の中で、赤痢様症状 を呈する本菌血清型かかなり検出されたこと は菌分離に際し留意しなければならない。そ れは現在既知病原大腸菌の中で赤病型の症状 を呈する菌型として0-28a.c:K73(BI8), 0-//2a.c:K66(B//) , 0-124:K72(B17), 0-136:K78(B22), 0-143:KX,(B), 0-144:KX2(B)の6種血清型 かあるか,この うち0-144:KX2(B) を除く5種血清型が本調直で 各種の資料より検出された。これらの病原大 腸菌は、乳糖運(非)分解性と云う点からSS 塞天培地等において、15~18時間程度の培養 では乳糖非分解菌と見誤ることか多く、又逆 に乳糖分解性の病原大腸菌のみを対象とすれ ば、赤痢型病原大腸菌を見逃すことになりか ゆない。Edwardsらりは乳糖又は白糖の利用が 遅く、しかもかスを産生しないか又は微量し

か産生しない様な大腸菌がかなり頻度に分離 され、TSI寒天及び類似の培地では赤痢菌と 間違りれやすいことかあるか、この様な菌株 を血清学的方法だけによって検査することは 大きな設りを犯しかわないと述べている。大 腸菌と赤痢菌との間にはかなりの共通抗原か あるか、これを病原大腸菌について見てみる と, Sh. dysenteriae 2 は 0-112a.c: K66(B11) と, Sh. dysenteriae 3 は 0-124:K72(B17) とまったく同一の O 抗原であり、Sh. dysenteriae 10 は 0-144:KX2(B) と交叉関係にあり、Sh. boydii 8 は 0-/43: KX1(B) と同一のO抗原であり、Sh. boydii 13は0-28a.c: K73(B18) ヒ交叉関係にある。この様なことか ら臨床像で赤痢様症状を呈し、 \$\$ 培地ある いはその他類似の培地上の乳糖非(選)分解菌 を使用して凝集反応を行ない、類属凝集反応 による同定の設りは大きな支障をきたすこと が明白である。これまでに赤痢型病原大腸菌 による食中毒例がかなり見受けられるか。3.17.23. 24.28~30.37.41.43.71.77) - 方においては原因不明の

を生じなかった。これは家畜の飼料に成長促 進, 整陽ある川下各種疾病予防削として微量 ではあるか飼料に抗生物質等が添加されてか る。特に豚の飼料には仔豚用で飼料100g中3 mg カ価, 成脈用で 1.8g カ価(全購連配合飼料)の DHS か他の抗生物質と共に添加されてお 3為に,腸内細菌,特に大腸菌はDHSに対し 高度の耐性を獲得し,両者間に有意な感受性 の差か認められなかった所以と思考せれ、豚 を含む家畜の糞便からの病原大腸菌の検索に はDHS添加培地を使用することは意味かなか った。最近田中73)は病原大腸菌の選択分離を 目的として, 大腸菌I型集落か形態的な特徴 を示す集落を産生する培地を創案し報告した か、乳糖非分解性大腸菌には至適でないので これらの菌の検索には他の腸内細菌分離培 地を併用しなければならず、更にすぐれた本 菌の選択分離培地の早期出現を期待したい。 次に同定法であるが、本菌疫学調査におい て本菌と同定された菌は15種血清型187株に

違した。これら分離株は全べて市販血清を使 用し、試験管内定量凝集反応の結果本菌と同 定されたものである為、これら動物を中心と した分離株が下痢一腸炎,あるいは食中毒由 来の病原大腸菌のO抗原及びK抗原と抗原構 造が完全に一致するか否かについて疑点が残 されていた。しかしなから現段階における本 菌同定法については、食中毒時の本菌検索の 場合は別として、疫学調査時の本菌同定法に ついては現在なお定型的分離方法はなく、研 究者が相互に成績を比較しても各々最終的同 定の基準が異なり、正確とが欠けている様に 思めれる。従って分離菌の吸収試験あるいは 交叉吸収試験を実施するのか最も望ましく。 病原大腸菌分離株の中から5種血清型5株に て家免免疫血清を作成し, 当該5種血清型57 株につき本菌標準株にて吸収試験を実施した 結果, O抗原, K抗原共に凝集素が完全に吸 奴され、その結果試験管内凝集反応で陰性と なったものは10株(17.5%)であり,他の47株 (82.5%)はO抗原の一部、又はK抗原の一部、又はK抗原の一部、及はK抗原の一部に本菌標準株 吸 の の が が 見 ら が が 見 が が 見 が が 見 が れ 原 本 自 連 株 吸 致 か い れ 原 は は 成 原 共 に 標 準 株 吸 致 か た に か が は は は な か た に か か は は は な か か に と か か ら が は は か か ら ら は か ら ら は か ら ら は か ら ら は か ら ら は か ら ら は か ら ら は か ら ら は か に 異 な か ら ら は か に 異 な か に 異 な か だ 原 が な に か が か に 異 な か だ 原 が な か が か に 異 な か だ 原 が な が か に 異 な か た 。

とはるいながらも、我国の下潮一腸炎、及び 食中毒において検出頻度の最も高い血清型。 即ち 0-124:K72(B17) や 0-44:K74(L) 等においては 人に対する一種の宿主特異性が見られるの ではないかと推測される。この様に本着なそ の血清型の種類によって人から人へ、あるい は人から動物へ、又逆に動物から人へとめか 循環し, 特に動物においては, 猫や豚か本剤 下痢一腸炎、あるいは食中毒時の一つの重要 な汚染源,あるいは媒介者であると思考され 本菌による下痢一腸炎、あるいは食中毒产 防の一手段を考える際には、これらの動物を 無視することはできない。

第下章 総括及び結論

食品と微生物、特に食品の安全性と云う立 場から,細菌性食中毒の中で,乳幼児下痢症 及び急性胃腸炎、赤痢様腸炎の起因菌の一つ として最近特に重要視されてきた病原大腸菌 の自然界における生態を調査した。病原大腸 菌による食中毒一下痢症の発生は、以前から かなり多かったものと思りれるか、本菌検査 法の繁雑さの為に報告例は意外に少なかった 。近年検査法の進歩につれて、次第にこの食 中毒一下痢症の実態が明らかにされ、その建 要性が広く注目される様になってきた。しか しをから本菌食中毒は、今後サルモネラヤブ ドウ球菌食中毒と同様に更に重要視されるで あるうと推測されるにも拘らず、本菌の疫源 特に自然界における生態はサルモネラと同 様であろうとえかれているだけで,現在そん を裏付けするものはない。しかし本角群の自 然界における分布状況を正しく把握し、かっ

人への感染の疫源を明らかにすることは、病原大腸菌による下痢一腸炎の予防上重安なことである。著者は本菌による污染源、污染発路、更に人と動物の相互関係を明らかにした。

- 1) 資料 2,041例 より 15,044 株の大腸菌を分離し、そのうち本菌陽性材料は 109例(5.3%)で15種血溝型 187株(1.2%)の本菌が検出された。
 - 2) 本菌の検出状況は市販カキ (29.2%),

猫(17.9%), 屠場内汚水(13.6%), 牛(7.9%), 野犬(7.1%), 屠場廃水(6.7%), 豚(6.3%), 人(3.6%), 浄化槽放流水(3.3%), 河川水(2.2%), 海水(2.1%)であり, 馬、愛玩犬、鶏, 緬羊、家免、井戸水、養殖及び天然カキから本菌は検出されなかった。

- 3) 分離菌 15種血清型 187株の内訳は0-112 a.c: K66(B11) 29株(15.5%), 0-128:K67(B12) 28株 (15.0%), 0-136:K78(B22) 21株 (11.2%), 0-125:K70(BIS) 20株 (10.7%), 0-26:K60(B6) 18株(9.6%), O-111:K58(B4) 16株(8.6%), O-127a :K63(B8) 12株(6.4%),0-143:KX,(B) 11株(5.9 %), 0-28a.c:K73(B18) 10株(5.3%), 0-86a:K61 (B7) 7株 (3.7%), O-S5:KS9(BS) 5株 (2.7%) , 0-124:K72(B17) 4株 (2.1%), 0-119:K69(B14) 3 株(1.6%), 0-126:K71(B16) 2株(1.1%), 0-86: K62(4) / 株 (0.5%)の順であり、0-44:K74(4) , 0-144:KX2(B), 0-146:K89(B)は検出されなかっ 声。
 - 4) 人糞便や水系資料から本菌を検索する

場合, Dihydrostreptomycin Sulfate を 4 149·/ml添加した普通ブイヨンにて増菌(37°d, 一夜)後, 4及び8 149·/ml添加した Mac Conkey Agarにつかれば、発育上多少本剤に影響を受ける本菌があるが、従来の本菌分離法に比較し検出率の上昇が期待できる。

- 5) 分離菌 187 株につま 9 種葉剤に対する感受性試験を実施したところ, Chloramphenicol, Colistin, Polymyxin B, Kanamycin, Paromomycin に対しては強い感受性を示し, Tetracycline 系葉剤は中等度で、Streptomycin に対してはかなり耐性を示す菌が多かった。
- 6) 分離菌15種血清型187株のうち, 5種血清型57株の吸収試験を実施したとう3, 0及びK凝集素が完全に吸収されたものは外株ので陰性となった状態集反応で陰性となったが原の一部のでは、17.5%)で、他の47株はの一部は K抗原の一部に本菌標準株とめずかな抗原構造の相違か見られた。

以上のごとく、乳幼児の下痢症あるには児 董 , 成人の急性胃腸炎, 赤痢様腸炎の起因菌 の一つである病原大腸菌の自然界における生 態を調査した結果,本菌群の自然界における **分布状態はかなりサルモネラに近い様相を呈** し,とりめけ人を中心とした動物及び環境, 特に猫や豚に下痢一腸炎由来の病原大腸菌と 同一抗原を有する本菌の保菌率か高かった。 しかしなから本菌血清型の種類によっマは、 ほとんど自然界には分布せず、ただ人のみの 保菌に限定されるのではないかと思りれる血 清型もあり、かなりの宿主特異性が認められ これらは本菌下痢一腸炎、あるいは食中毒 の疫源や煤介者として公参衛生上意義深く, 又動物由来や環境由来を中心とした病原大腸 菌は,人の下痢-腸炎由来の本菌に比較し, 部分抗原がらずかに異なるものか多かったか ,この点は本菌疫学上重要な問題であるうと 思考され, 更にこの種の菌の病原性が今後里 要視されるであるう。

(本論文內要旨は第26回日本公歌衛生学会,京都市、1968;第67回日本獣医学会,東京都、1969;第68回日本獣医学会,山口市、1969;第69回日本獣医学会,相模原市、1970后於山飞名小ぞ小発表した。)

第▼章 文 献

- 1) Adam, A. (1927). Dyspepsiekoli. Zur Frage der bakteriellen Ätiologie der sogen. alimentären Intoxikation. Jb. Kinderh., 116, 8-40.
- 3) 考川豊・石川徳市・赤羽荘資・他 (1968). 病原大腸菌食中毒の細菌学的検索につい て. 日本公衛誌, 15, 365.
- 4) 浅川豊・赤羽荘寛・石川徳市・他 (1972). Escherichia coli 0-151:H50 (新0群) ならびに 0-27 = よると推定される集団下痢症につ いて、日感染学誌、46、35.
 - 5) 青柳国三郎 (1967). 舞鶴地区に於什る病原大腸菌の分布, 検出菌の生物学的性状並に感受性試験. 共済医報, 16, 562-567.
 - 6) Barr, F.S., Carman, P.E. (1957). Diarrhea

- in chickens caused by Escherichia coli 0-1/1. Southeast Vet., 9, 11-12.
- 7) 辺野喜正夫·善養寺浩 (1972). 新細菌性 食中毒. 南山堂, 東京.
- Bray, J. (1945). Isolation of antigenically homogeneous strains of Bact.coli neapolitanum from summer diarrhoea of infants. J. Path. & Bacteriol., 57, 239-247.
- 9) Edwards, P.R., Ewing, W.H. (1954). Studies on a coliform type isolated from the organs of fowls. Cornell Vet., 44, 50-56.
- 10) Edwards, P. R., Ewing, W. H. (1964). Identification of Enterobacteriaceae. 中谷·坂崎訳, 一成堂, 東京.
- 11) Ewing, W. H., Davis, B. R. (1961). The O antigen groups of Escherichia coli cultures from various sources. CDC Publication, CDC, Atlanta, Ga.
- 12) Ewing, W.H. (1962). Sources of Escherichia colicultures that belonged to 0 antigens group associated with infantile diarrheal disease. J. Infect.

- Dis., 110, 114-120.
- 13) 遠藤元清・伊藤昭吾・阪口玄二・他(1957)。 屠肉の細菌学的研究。日獣誌,19,199-203。
- 14) Fey, H (1952). Isolierung eines Colistammes vom Typ 55:B5 aus boviner Mastitis. Schweiz. Z. all. Path., 15, 444-448.
- 15) Fey, H. (1955). Serologische, biochemische und biologische Untersuchungen an Stämmen aus boviner Colimastitis. Ergebn. Hyg. Bakt., 29, 394-474.
- 16) 深沢平・増田敬三 (1969)。と畜場からみたサルモネラ。 Media circle, 14,333-339.
- 17) 福島-郡・渡辺昭宣・木村正二・他(1969). 水系感染と思めんる病原大腸菌 0-28a.c に 因る集団下痢症. 日本公衛誌, 16, 398-399.
- 18) 福見秀雄 (1959)。 病原大腸菌の調査研究。 国立予研年報,昭和33年度,39-45。
- 19) Giles, C., Sangster, G. (1948). An outbreak of infantile gastro-enteritis in aberdeen. The association of a special type of Bact. coli with the infection. J. Hyg., 46, 1-9.

- 20) Glantz, P.J., Rothenbacher, H. (1965). Isolation of Escherichia coli Serotype O\$5:K\$9(B\$):H19 from Calves with Meningitis and Septicemia. Amer. J. Vet. Res., 26, 258-261.
- 21) Goldschmidt, R. (1933). Untersuchungen zur Ätiologie der Durchfallserkrankungen des Säuglings. Jb. kinderch., 139, 318-358.
- 22) 今村嘉礼武 (1974). 豚由来 Escherichia coli 1- 関する研究. 麻布獣医科大学研究報告 , 27, 175-219.
- 23) 今野二郎·桜田武·中隈雅敬·他 (1965)。 E. coli 0-124 の水系感染に因ると思われる 下痢症の流行例。第14回東北公象衛生学 会。
- 24) 井上裕正・後藤春一・阿瀬操・他 (1967). 病原大腸菌 E. coli 0-143: KX1:Hー による集団 下痢症. 日感染学誌, 41, 331-336.
- Tensen, C.O. (1897). Bacterium coli commune als Krankheitserreger bei Tieren. Ergebn. Allg. Path., 4, 819-858.

- 26) 久我 オ 干 子 (1968). 集団 給食施設従業者保菌者検索 ニョッ て。 4 口県衛研報, 10, 22-23.
- 27) 加藤敏忠・野口謹一・織田利昭・他(1968)。 屠畜場における施設及で食肉の細菌学的 汚染調査。日獣会誌, 589。
- 28) 加地信・七山悠三 (1968)。 病原大腸菌 0-144: KX2による食中毒事件。 Media circle, 13, 221-224.
- 29) 貴田正義・下内啓万・加納賢五・他(1968). Escherichia coli 0-124:K72:H-1=よる集団下痢症 . 兵庫県衛研報, 3, 1-6.
- 30) 桑原寛·高桑三明·塩田干恵子・他(1969). 病原大腸菌 0-28a.c: K73による集団食中毒に ついて、食品衛生研究, 19, 430-435.
 - 31) 河島俊一・渡辺昭宣 (1957). 集団食中毒 例より分離した E. coli (7.74.4) について . 第12回日本公衛学会.
 - 32) 厚生省環境衛生局食品衛生課編。全国食中毒事件録,昭和40年度-44年度。

- 33) 小黒寿・石月要平・西内力・他(1970). 枝肉汚染の実態とその洗浄効果に関する 検討.日獣会誌,23,484-487.
- 34) 小管儀平・岩崎久夫・金子憲雄・他(1967). 枝肉の細菌汚染と洗浄効果に関する調査研究. 日獣会誌, 20, 159-164.
- 35) Lecce, J.G., Reep, B.R. (1962). Escherichia coli associated with colostrum-free neonatal pigs raised in isolation. J. exp. Med., 115, 491-501.
- Mackel, D.C., Langley, L.F., Prchal, C.J. (1965).

 Occurrence in Swine of Salmonella and Serotype of Escherichia coli Pathogenic to Man. J. Bact., 89, 1434-1435.
- 37) 松田漸・多田哲夫・小林桂子・他(1968). 病原性大腸菌0-/44による食中毒事例について. 福井県衛研報, 2, 27-36.
- 38) 永井勇・久我 ア 干子・牛尾 善一 (1967). 集団給食施設従業者の病原大 腸菌, 腸炎 ビブリオ, サルモネラ保菌者検索. ムロ 県衛研報, 9,41-42.

- 39) 長木大三·久保田好之 (1960). 詳解腸內 細菌. 土里 Medical news, 71, 139-175.
- 40) 中村龍夫・川口とみる・内田乳美・他(1966)。食中毒起因菌分布調直成績について、名古屋市衛研報、13、9-15。
- 41) 中西良・須知仁・田尻稲穂・他(1958). 赤痢症状を呈した患者より分離した病原 大腸菌(0-28a.c:B18)に関する知見補遺. 日感染学誌,32,531-535.
 - 42) 中村明子・坂崎利一・小河秀正 (1968).病原大腸菌の病原性、日細菌誌, 23, 253 254.
- 1969). 大腸菌 028a.c を起因菌とした学校給食による集団食中毒例。埼玉県衛研教, 4,100-106.
 - 44) 岡田正次郎 (1974). 大腸菌06 1=起因す3 集团下痢症 — 2事例 1= 2 m 2 — . 公象 衛生情報, 4 (10), 25-29.
 - 45) Φ rskov, F. (1951). On the occurrence of E.coli

- belonging to O group 26 in case of infantile diarrhea and white scours. Acta Path. Microbiol. Scand., 29, 373-378.
- 46) Ramirez, M.J., Mccleskey, C.S. (1968). Dihydrostreptomycin in the isolation of pathogenic Escherichia coli. Amer. J. clin. Path., 50, 705-709.
- 47) Rees, T.A. (1958). Studies on Escherichia coli of animal origin. 1) E. coli from Natural Outbreaks of Colibacillosis of Calves. J. comp. Path., 68, 388-398.
- 48) Rees, T.A. (1960). The isolation of Escherichia coliserotype 0.128, B.12 from a case of gastro-enteritis in the calf. J. Path. Bact., 79, 203-206.
- 50) Sojka, W. J., Carnaghan, R.B.A., (1961). Escherichia coli Infection in Poultry. Res. Vet. Sci., 2, 340-352.
- 51) Sojka, W. J. (1965). Escherichia coli in animals. C. A. B. F. R., England.

- 52) Sakazaki, R., Namioka, S. (1956). Serological studies on Escherichia coli isolated from animals. Jap. J. exp. Med., 26, 29-36.
- 53) Sakazaki, R., Tamura, K., Saito, M. (1967). Enteropathogenic Escherichia coli associated with diarrhea in children and adults. Jap. J. M. Sci & Biol., 20, 387-399.
- 54) 坂崎利一 (1962)。 大腸菌一とくに病原大腸菌を中心として、Media circle, 42, 1-23.
- 55) 坂崎利一 (1966)。 病原大腸菌と腸炎。食 衛誌, 7, 116-120。
- 56) 坂崎利一(1967)。下痢一腸炎における病原大腸菌検査法。食品衛生研究,17,479-49%
- 57) 坂崎利一 (1972). 原因不明の食中毒について、食品衛生研究, 22, 955-974.
- 58) 佐藤太郎・長尾正己・加藤十一 (1958)。 東京港海水中の病原大腸菌についる。第 13回日本公衛学会。
- 59) 管原恒有・金田-建男・伊田勝 (1956)。 盛岡市某小学校における病原大腸菌が原

- 因と思われる集団下痢症について(疫学及臨床)。第11回日本公衛学会。
- 60) 科田武 (1967). Escherichia coli 0-124 の水系 感染に因ると思われる下痢症の流行例. 衛生検査, 16, 10-11.
- 61) 佐久間文久·荒木和子 (1970). 病原大腸 菌 (0-26) に起因する集団食中毒の1例. 福島県衛研報,18,30-34.
- 62) 杉作蔵・中尾知=郎・松島鋭郎・他(1971). 病原性大腸菌 E.coli 0-119:K69(B/4)による集 団下痢症ニコいて. 岡4県衛研報, 18,1-6.
- 63) 坂井干三・伊藤武・工藤泰雄・他 (1970). E.coli 0-11 と推定される集団下痢症. 日細菌誌, 25, 477-478.
- 64) 坂井干三・丸山務・伊藤武・他(1971)。 E.coli 0-118によると推定される集団下潮症 について、日感染学誌,45,314。
- 65) 篠川至・大科達夫・池村謙吾・他 (1968). 病原大腸菌に関する研究。 3.集団食中毒 から分離された E.coli 0-27:K(B)X:H7 につい

- て. 新潟県衛研報,119,1-19.
- 66) 篠川至・大科達夫・池村謙音(1972). 集団下痢症から分離された E.coli 0-148:K?: H28 ニコッマ. 日細菌誌, 27, 270.
- 67) 田村和満 (1975)。腸内細菌 およびビブリ 木の起病性と毒素原性。 Modern media, 21, 458-466。
- 68) Taylor, J., Powell, B. W., Wright, J. (1949). Infantile diarrhea and vomiting. A clinical and bacteriological investigation. Brit. Med. J., 2, 117-125.
- Officers of Hlth. Lab. Service and The Society of Med. Officers of Hlth. (1965). Excretion of Salmonella and Shigella organisms and enteropathogenic Escherichia coli in normal children. Mon. Bull. Minist. Hlth., 24, 376-381.
- 70) 徳富剛二郎(1957)。 屠場のサルモネラ, 乳房炎、肺炎に関する調査研究について、 国立公象衛生院報告, 6, 6-7.
- 71) 谷藤勝雄・工藤啓子・中野弥・他 (1964). 再び赤痢様下痢症から分離された病原大

- 腸菌岩手株 (E.coli 0-144)。 第13回東北公 象衛生学会。
- 72) 谷藤勝雄・柳原敬・藤野訓男・他 (1974). 保育園の病原大腸菌, 腸内ウイルスの長期観察について、日細菌誌, 29, 703.
- 73) 田中恭生 (1972). 病原大腸菌の検索を目的とした E. co/i の選択分離培地の研究, ならびに病原大腸菌の糞便內保菌調査について. 日細菌誌, 27,397.
- 74) Ulbrich, F. (1954). Escherichia Coli Typ 055:B5: H16 als Erreger der Kälberruhr. Zentbl. Bact. Parasitkde. I. Orig., 160, 506-507.
- 75) 上田貞善・佐々木諭・甲剂 (1959)。集団食中毒例より分離した病原大腸菌 0-55 について、日細菌誌、14、48-49。
 - 76) 紅生一部・武原文三部・奥山義光 (1958)。動物由来の大腸菌, 特に牛由来の大腸菌の分類と新産犢人の侵入と定着について、神奈川県衛研報, 1-26。
 - 77) 臼井治郎・所敷・所正澄・他 (1967)。病

- 原大腸菌 0-143 1- 因 3 集团下痢症。日感染学能, 41, 31.
- 78) Varela, G., Aguirre, A., Carrillo, J. (1946).

 Escherichia coli-gomez nueva especie aislada de um caso mortal de diarrea. Boll. Med. Hosp. Infantil, 3, 3-7.
- 79) 渡辺太恕吉(1961)。 宮城県における屠肉食肉衛生の考察。日獣会誌。14,410。
- 80) 渡辺昭宣・伊藤連太郎・友野加智子(1968). 食品中における大腸菌群の分布と生物学的, 血清学的性状について. 埼玉県衛研報, 3, 45-55.
- 81) 渡辺昭宣・友野加智子・檜山流 (1969). 食肉の流通における細菌学的汚染調査. I.と育場における食肉の汚染. 埼玉県衛研報, 4, 76-85.
 - 82) 矢挽輝武・浜田輔一 (1969)。 ヒトかょび 各種動物ふん便(含腸管内容)における 病原大腸菌の検出。食虧誌,10,26-31。
 - 83) 山形操六・谷藤勝雄・石母田四郎・他(

- 1956). 盛岡市某小学校における病原大腸菌が原因と思われる集団下痢症につりて(病原). 第11回日本公衛学会.
- 84) 吉村陽・来住輝彦・田村和満・他 (1974). E.coli 021:H21によるとおもかれる食中毒例について、日細菌誌, 29, 96.
- 85) 善養寺浩·脊藤誠 (1966). 腸炎, 109-122, 納谷書店. 東京.
- 86) 善養寺治・坂井干三・伊藤武・他 (1968). Escherichia coli 0-6 と 0-27 によると 推定される各 2 例の集団下痢症について. 日細菌誌, 23, 594-595.
- 87) 善養寺治 (1969)。 最近のサルモネラについて(その2)。 日本公衛誌, 16, 729-735。
- 88) 頭本藤雄 (1968)。健康成人より分離され た病原大腸菌の観察。日本公衛誌,15, 37-41。
- 89) 大久保忠敬 (1967)。 = 7トリの Enterobacteriaceae, 特に Escherichia coliに関する研究(修士学位論文)。

Table 1. Distribution of the enteropathogenic E. coli in various animals, and in other natural sources.

Sources	Total	Man	Cattle	Hanco	ll.a	Pet	Stray	Travel	Cat	Chass	D-11.4	River	Sea	Well	Water		Water		Natural
Items	lotal	Man	Cattle	House	Hog	dog	dog	Flowl	Cat	Slieeb	Kabbil	water	water	water	septic tank	in abattoir	from abattoir	oyster	oyster
No. of samples	2,041	309	88	23	735	60	156	2/4	56	/4	11	90	48	40	30	66	60	24	17
No. of E. coli strains	15,044	1,211	852	231	5,394	391	857	602	1,003	77	108	594	320	19	338	1,270	1,205	470	102
No. of enteropathogenic E.coli positive samples	109	11	7	0	46	0	11	0	10	0	0	2	1	0	- Control of the Cont	9	4	7	0
(%)	(5.34)	(3.56)	(7.95)	(0)	(6.26)	(0)	(7.05)	(0)	(17.86)	(0)	(0)	(2.22)	(2.08)	(0)	(3.33)	(13.64)	(6.67)	(29.17)	(0)
No. of enteropathogenic E.coli strains	187	19	16	0	68	0	19	0	23	0	0	2	1	0	1	2/	10	7	0
(%)	(1.24)	(1.57)	(/.88)	(0)	(1.26)	(0)	(2.22)	(0)	(2.29)	(0)	(0)	(0.34)	(0.31)	(0)	(0.29)	(1.65)	(0.13)	(1.49)	(0)

Table 2. Biological properties of the enteropathogenic E. coli isolates.

Biological test Sources		Gram stain		Motility ツ		C	707	(+)	-	-	ナ 2 3 3(-)	' ' 1	TPA	(+)(J	< T		te	S	, (Golatin 3	-	/ < o.'.		Malnnate	NILFALE X	+ -) +)	ָר ר	Q C	(/ 4	とこと	F ASEDIXO	Cytochrome .	olorizatic	Litmus milk	solidification;	Litmus milk
Total		114	1	6 8		114	0			l		1	114	i	0							1		l .		//4			114				(14				
Man	0	19	1	6	3	19	0	14	5	0	19	0	19	19	0	0	19	0	19	0	19	11	8	0	19	19	0	0	19	0	19	0	19	19	0	19	0
Catt/e	0	16	1	6		16	0	16	Ó	0	16	0	16	16	0	0	16	0	16	0	16	0	16	0	16	16	0	0	16	0	16	0	16	16	0	16	0
Hog	0	26	2	24 :	2	26	0	26	0	0	26	0	26	26	0	0	26	0	26	0	26	0	26	0	26	26	0	0	26	0	26	0	26	26	0	26	0
$\mathcal{D}og$	0	19		7	2	19	0	19	0	0	19	0	19	19	0	0	19	0	19	0	19	3	16	0	19	19	0	0	19	0	19	0	19	19	0	19	o
Cat	0	23	3	23	0	23	0	23	0	0	23	0	23	23	0	0	23	0	23	0	23	16	7	0	23	23	0	0	23	o	23	0	23	23	0	23	Ó
River water	0	2		2	0	2	0	2	0	0	2	0	2	2	0	0	2	0	2	0	2	o	2	0	2	2	0	0	2	0	3	0	2	2	0	2	0
Sea water	0	l		1	0	1	0	1	0	0	1	0	1	1	0	0	1	0	1	0	1	o	1	0	1	1	0	0	1	0	ſ	0	1	1	0	1	0
Water from septic tank	0	1		1 (0	1	0	t	0	0	1	0	1	1	0	0	1	0	1	0	1	0	1	0	1	1	0	0	1	0	1	0	1	1	0	,	0
Öyster	0	7		6	1	7	0	6		0	7	0	7	7	0	0	7	0	7	0	7	0	7	0	7	7	0	0	7	0	7	0	7	7	0	7	0

Table 3. Fermentation of sugars by the enteropathogenic E.coli isolates.

	Substrates	41ycetin		Xylose		Rhamnose		Arabinose		Galactose	Tructose)	Mannose		Lactose		Trehalose	1.141/020	Z , +	Saccharos	-	Raffinose	4	Glycogen	Dextrine		Starch	ממוכוו	<u>.</u>	Adonitol		Mannito/		Dulcito/	700	Sorbito	+ 1000	Thasital
)	Sources	(+)(<u>-)</u>	(+)(-)	(+)(-) ((+)(-)(+)(-)	(+)	(-)	(+)(-	-)	(+)(-)(+)(-)	(+)	(-)	0	1	(+)(-) (-	+)(-)	(+)(-) (+	-)(-)	(+)((-)	(+)(-	-)(-	-)(-)(+)(-)	(+)(-)	(+) (<u>-</u>)
	Total	ı	- 1		- 1		- 1		-		1		9	- 1				į.			1		1		0 115	- 1					- 1		-					//3
	Man	19	0	19	0	14	5	19	0 1	19 0	19	Ó	19	0	19	0	19 0	19	0	11	p	11 8	3 0	79	0 /	90	19	2	17	0 /	9	9 0	9	10	19	0	0	19
	Cattle	16	0	16	0	16	0	16	0	16 0	16	0	16	0	16		3 3	16	0	2	14	15	10	16	0 1	60	16	2	14	0 1	6/	6 (16	, 6	16	0	0	16
	Hog	26	0	26	0	25	1	26	0	26 C	26	0	26	0	26		26 0	26	0	19	7	19 7	7 0	26	0 2	6/	25	21	5	7 1	9 2	6	18	- /3	26	, 0	0	26
	Dog	19	0	19	0	19	0	19	0	19 0	19	0	19	0	19	0 1	9 0	19	0	15	4	15 9	20	19	0 (90	19	4	15	0 1	9/	9 6	//	? 2	19	0	0	19
	Cat	23	0	23	0	23	0	23	0	23 0	23	0	23	0	23	0 2	3 0	23	0	18	2	20	30	23	0 2	3 0	23	17	6	0 2	3 2	3 4	2	3 0	21	2	1	22
	River water	2	0	2	0	2	0	2	0	2 6	2	0	2	0	2	0	2 0	2	0	2	0	2 (00	2	0	20	2	2	0	٥	2	2 (, :	2 0	2	0	0	2
)	Sea water	1	0	1	0	1	0	/	0	1 6	1	Ô	1	0	1		1 6	1	0	1	0	1 6	00	1	0	/ 0	1	0	1	0	/	′ (,	,	1	0	0	1
	Wate from septic tank	/	0	1	0	1	0	1	0	/ 0	1	0		0	/ (1 0	1	0	1	0	1 1	, 0	′ /	0	/ 0	1	1	0	0	//	· (1 6	/	0	0	1
	Oyster	7	0	7	0	6	/	7	0	7 0	7	0	7	0	7	0	7 0	7	0	3	4	3 4	20	7	0	7 0	7	3	4	0	7	7 (, 3	7 0	7	0	0	7

(37°C, 7 days)

Table 4. Serological classification of the enteropathogenic E. coli isolates.

Sources	Man	Cattle	Hog	Dog	Cat	River	water	waler i	Sewage	Water	Sellin	Total
Serotype	۲۰	ò					'š	K Ark	7 3	ने डू	1000	
Total	19	16	68	19	23	2		1	2/	10	'7	187
0-26: K60 (B6)			14		1				2	1		18
0-28a.c:K73(BI8)			1		7				1	1		10
0-44:K74(L)												
0-55: K59 (B5)			and the same of th	3					1			5
0-86a:K61(B7)	5		1							1		7
0-86: K62 (L)				1								1
0-111: K\$8 (B4)		13			3							16
0-112a.c: K66 (B11)			20	2					4	2		29
0-119: K69 (B14)	3											3
0-124: K72 (B17)									2	1		4
0-125:K70 (B15)	3		5		2	1			4	2	3	20
0-126: K71 (B16)	discourse speaking class for cape a dept for cape		1						1			2
0-127a: K63 (B8)	4								2	- 1	3	12
0-128:K67(B12)			7	6	7	1			3	1	1	28
0-136: K78 (B22)			17		3							2/
0-143:KX1 (B)	3		ļ	7								11
0-144: KX2 (B)												
0-146:K89(B)												

Table 5. Isolation of the enteropathogenic E.coli from normal contents of hog caeca.

Sampling	No. of samples	No. of E. coli strains		eropathogenic ive samples (%)	No. of enter E.coli stra	ropathogenic ains (%)
Total	380	3,766	15	(3.95)	26	(0.69)
March 1969	50	490		(2.0)	1	(0.2)
April	30	302	3	(10.0)	10	(3.3)
May	30	299	3	(10.0)	4	(1.3)
June	30	297	1	(3,3)	1	(0.3)
July	30	303	1	(3.3)	/	(0.3)
August	30	304	0	(0)	0	(0)
September	30	288	0	(0)	0	(0)
October	30	299	1	(3.3)	/	(0.3)
November	30	295	1	(3.3)	/	(0.3)
December	30	298	3	(10.0)	5	(1.7)
January 1970	30	293	0	(0)	0	(0)
February	30	298	/	(3.3)	2	(0.7)

Table 6. Isolation of the enteropathogenic E.coli from waterly contents of hog caeca.

Sampling	No. of samples	No. of E. coli strains	No. of ente E.coli positi	ropathogenic ve samples (%)	No. of entero E. coli stra	pathogenic ins (%)
Total	80	820	7	(8.75)	16	(1.95)
March 1969	16	172		(6.3)	1	(0.6)
April	4	41		(25.0)	7	(17.1)
May	4	43	0	(0)	0	(0)
Tune	5	47	0	(0)	0	(0)
July	7	71		(/4.3)	1	(1.4)
August	8	80	0	(0)	0	(0)
September	5	50	0	(0)	0	(0)
October	5	47	0	(0)	0	(0)
November	8	78	2	(25.0)	3	(3.8)
December	6	65	1	(16.7)	/	(1.5)
January 1970	5	49	0	(0)	ø	(0)
Flebruary	7	77	1	(/4.3)	3	(3.9)

Table 7. Seasonal variation of the isolation rate of the enteropathogenic E. colifrom normal contents of hog caeca.

Season	No. of enteropathogenic E.coli positive samples No. of samples	% (d=1%)
Spring (From March to May)	7/110	2.7 ≤ P ≤ 13.9
Summer (From June to August)	2/90	0.5 \(P \(\) 8.9
Autumn (From September to November)	2/90	0.5 \(\text{P} \) \(\le \) 8.9
Winter (From December to February)	4 90	1.4 \(P \) \(\) 12.2

Note: Spring is higher than summer and autumn by χ^2 -test (P < 0.05).

Table 8. Isolation of the enteropathogenic E.coli from sewage in abattoir.

Sampling	No. of samples	No. of E. coli strains	No. of enterop E.coli positive	pathogenic samples (%)	No. of enteropath E. coli strains	(%)	barteria	No. of coli- aerogenes group per ml.
Total	66	1,270	9	(13.6)	2/	(1.7)	1.1×10 ⁶	6.1×10 ⁴
Firom April to May 1969	18	350	2	(11.1)	5	(1.4)	4.2×10 ⁵	3.9×10 ⁴
Firom July to August	14	270	3	(21.6)	9	(3.3)	1.8×106	7.5×10 ⁴
From October to November	23	420	2	(8.7)	4	(0.95)	1.2×106	8.8×10 ⁴
From January to February 1970	11	230	2	(18.2)	3	(1.3)	9.5× 105	4.3×10 ⁴

Table 9. Isolation of the enteropathogenic E.coli from digestion tank water from abattoir.

Sampling	No. of samples	No. of E. coli strains	No. of enterope E.coli positive	athogenic samples (%)	No. of enteropat E. coli strain	hogenic s (%)	bacteria	No. of coli- aerogenes group per ml.
Total	60	1,205	4	(6.7)	10	(0.83)	5.4×104	4.4×10 ³
From April to May 1969	/5	315		(6.7)	2	(0.63)	3.9×104	2.4×10 ³
From July to August	15	290	2	(13.3)	5	(1.72)	4.1 × 104	6.8×10 ³
From October to November	15	280	0	(0)	0	(0)	5.3×10 ^K	3.7×103
From January to February 1970	/5	3 20		(6.7)	3	(0.94)	8.4×104	4.5×10 ³

Table 10. Monthly variation in No. of coli-aerogenes group of normal contents of hog caeca.

- Andrew State Conference of the Conference of t					
Samplina	∑ (No. of bacteria)	No. of samples	又士 Standard error	Σ^2 No. of samples	$\sum \chi^2$
Sampling	2,345.4	380	6.17 ± 0.039	14,500.55	14,688.34
March 1969	3 2 2.0	49	6.57 ± 0.074	2,116.00	2,128.90
April	163.9	27	6.07 ± 0.190	994.93	1,020.21
May	159.4	27	5.90 ± 0.143	941.05	958.42
June	170.8	29	5.89 ± 0.148	1,005.95	1,023.76
July	168.2	29	5.80 ± 0.168	975.56	998.58
August	187.7	30	6.26 ± 0.131	1,174.38	1,189.27
September	175.0	30	5.83±0.131	1,020.83	1,035.80
October	179.0	2 9	6.17±0.139	1,104.86	1,120.44
November	185.9	29	6.41 ± 0.130	1,191.68	1,205.39
December	169.9	2 7	6.29 ± 0.103	1,069.11	1,076.51
January 1970	185.1	30	6.17 ± 0.107	1,1 42.07	1,152.07
February	179.9	29	6.20 ± 0.113	1,1 16.00	1,1 26.29
Enteropathogenic E. coli positive samples	98.6	/ 5	6.57 ± 0.148	648.13	652.70
			,		

Note: The units of No. of bacteria indicate log 10 per gram.

Table 11. Monthly variation in No. of coli-aerogenes group of waterly contents of hog caeca.

****	*	Ţ	-		
Sampling	Σ(No. of bacteria)	No. of samples	え± Standard error	Σ^2 No. of samples	$\sum \chi^2$
Pamping	523.1	80	6.54 ± 0.078	3,435.05	3,459.15
March 1969	102.7	15	6.85 ± 0.030	703.15	703.33
April	20.5	3	6.83±0.159	140.08	141.61
May	22.3	4	5.58 ± 0.417	124.32	126.41
June	29.3	5	5.86± 0.275	171.70	173.21
July	39.6	6	6.60 ± 0.213	261.36	262.72
August	48.6	8	6.08± 0.341	295.25	300.76
September	34.0	5	6.80 ± 0.165	231.20	236.66
October	29.7	5	5.94 ± 0.331	176.42	178.61
November	42.5	6	7.08 ± 0.147	301.04	301.69
December	33.8	5	6.76 ± 0.140	228.49	228.96
January 1970	34.7	5	6.94 ± 0.068	240.82	240.9/
February	38.6	6	6.43 ± 0.252	248.33	250.24
Enteropathogenic E. coli positive samples	46.8	7	6.69 ± 0.166	312.89	314.04
11 . —1	A 11 A 1			*····	

Note: The units of No. of bacteria indicate log 10 per gram.

Table 12. State on growth of the enteropathogenic E.coli standard strains on the MacConkey agar containing DHS.

Concentration			_	_		0 .		<u> </u>		
of DHS	per	2μg. per	3 µg.	4,119.	5 µg.	6 ug.	7 ug.	8 ug.	9 11g.	10 Mg.
Serotype	ml.	ml.	ml.	ml.	ml.	ml.	ml.	ml.	per ml.	per ml.
0-26:K60 (B6)	##	#	-111	-111	#	#	++-	+	+	+
0-28a.c: K73(B18)	111	#	##	+++	111	111	111	##	#	#
0-44:K74(L)	##-	111	#	#	111	#	11	++	+	#
0-55:K59(B5)	#	111-	+111-	#	++	#	+	+	+	
0-86a:K61 (B7)	##	111	#	#	#	#	+	+	+	+
0-86:K62(L)	#	+++	#	#	##	111	#	#	+	+
0-111:K58(B4)	+++	#	111	#	+11-	#	#	#	+	+
0-112a.c:K66(B11)	+++	##	#	#	++	#	+	+	+	+
0-119:K69 (B14)	+++	#	#	#	111	+	++	+	#	#
0-124:K72(B17)	#	+++	#	##	#	#	#	++	#	#
0-125:K70 (B15)	+++	+++	+++	111	111	+	#	+	#	#
0-126:K71 (B16)	+++	#	111	##	#	111	+	11	#	#
0-127a: K63 (B8)	+++	111	111	#	#	111	#	++	#	#
0-128: K67 (B12)	+++	#	111	#	+	#	#	+	+	+
0-136: K78 (B22)	+++	#	111	#	#	#	#	#	++	#
0-143: KX1 (B)	#	#	+++	#	#	#	+	+	+	
0-144: KX2 (B)	#	##	-111	#	#	#	++	#	#	#
0-146:K89(B)	+++	111-	#	#	##	#	#	#	#	#

Note: # = Heavy growth, # = moderate, += very scant (10 colonies or less), -= no colonies.

Table 13. State on growth of the enteropathogenic E.coli isolates on the MacConkey agar containing DHS.

					1 '4 '		a		
Concentration of Dhi Samples		3 Mg. per ml.	4 Mg. per ml.	5 ug. per ml.	6 Mg. per ml.	7119. per ml.	8 µg. pen ml.	qug. per ml.	10 µg. pen ml.
No. of isolates	(114)	114	113	113	110	108	106	103	102
	(%)	(100)	(99.1)	(99.1)	(96.5)	(94.7)	(93.0)	(90.4)	(89.5)
Man	(19)	19	19	19	19	19	18	17	17
Cattle	(16)	16	16	16	16	16	15	14	14
Hog	(26)	26	25	25	22	2/	2/	20	20
Dog	(19)	19	19	19	19	19	19	19	19
Cat	(23)	23	23	23	23	23	23	23	22
River water	(2)	2	2	2	2	1	/	1	1
Sea water	(1)	1	1	1	1	1	1	1	1
Water from Septic tank	(1)		1	1	1	1	1	1	1
Oyster	(7)	7	7	7	7	7	7	7	7

Note: Figure indicate the number of heavy or moderately growth cultures.

Table 14. State on growth of the enteropathogenic E.coli serotypes on the MacConkey agar containing DHS.

	ا احداد ما احداد ا									
Semilype	Concentration of DHS	ב	3 48.	4 Mg.	5 49.	649.	7 49.	848.	949.	(0 Mg.
	.		ğΕ.	ξ <u>Ε</u>	3 6	A E	mer.	ج <u>د</u> آ	7 E	Per.
	Total 11	4	4	= 3	3	011	801	901	[03	102
	<i>(</i>)	1)(%	(00	(99.1)	(44.1)	(46.5)	(94.7)	(93.0)	(90.4)	(8%5)
0-26: K60 (B6)	T-0	% -	œ —	∞ −	~ -	∞-	∞ −	& –	&-	6 0 -
0-28a.c: K73(B18)		4	_	7	4	7	2	7	6	7
0-55:K59(BS)		m	6	m	m	m	8	m	8	m
0-86a:K61(B7)		2	5	£	5	Ŋ	S	5	5	5
1		-	_	_	-	_	-	_	_	_
0-111:K58(B4)	Cattle	<u>w</u> w	$\overline{\omega}$ w	ლო	<u>m</u> m	ლო	<u>m</u> m	ω ω	<u>~</u> ~	ლ ო
			_	-	_	-	_	1	0	0
0-112a.c:K66(B11)		50	χς	<u></u> φ.	7 ν	<u></u>	_ ~	> 0	<u>o</u> c	0 v
0-119:K69(B14)		1 8	(m	(1)	m	m	m	ر س	(W	m
		-		_	_	/	/	_	_	
		8	W	~	m	m	8	7	_	
		_	_	_	~	-	0	0	0	0
0-125: K70(B/S)		N	α	α	7	C	C	7	7	a
	River water	_ (~ (<u>~ 1</u>	~(~(00	00	00	01
		2	w	~	~	<i>(</i> 1)		n	, C	n
		A	4	4	4	4	*	*	×	×
0-127a: K63(B8)	1			_	_		_	0	0	0.
	Water from septik tank Ovster	~ m	~ m	~ ω	~ m	~ w	~m	∕ w	∕w	~ ω
					_				/	
	404	-	_`	_ `	~`	~`	_ `		~ `	~`
(CIB) LY 13 10-0	80,0	9 0	00	20	20	20	20	20	96	9 Y
	Car Right woter		_ ~		<u>~</u> ~	~ ~	~~	· ·	~~	< د
	Spa water	. ~	. ~	. ~	. ~	. \	. <	. ~	_	. \
	Ovster	_		/	/	/	/	/	/	/
0-136:K78 (B22)	Cat	m	m	8	Μ	ĸ	m	3	3	m
	Man	m -	~ -	Μ-	m -	m -	Μ-	Μ-	ტ -	m -
0-[45.KXI(D)	708	- 6-	- <u>c</u>					- [-6	-0
						ŗ				

Note: Figure indicate the number of heavy or moderatelygrowth cultures.

Table 15. State on growth of common E. coli on the MacConkey agar containing DHS.

Sources	No. of cultures	4ug. per ml.	6 ug. per ml.	8 µg. per ml.	10 ug. per ml.
E.coli isolated from man	104	60	25	23	
(%)		(57.7)	(24.0)	(22.1)	
E. coli isolated from river water	62	62	34	26	
(%)		(/00.0)	(54.8)	(41.9)	
E.coli isolated from hog	110	108	105	102	70
(%)		(98.2)	(95.5)	(92.7)	(63.6)
Enteropathogenic E. coli isolates	114	3	110	106	102
(%)		(99.1)	(96.5)	(93.0)	(89.5)
Enteropathogenic E. coli standard	18	18	18	13	10
strains (%)		((00.0)	(100.0)	(72.2)	(55.6)

Note: Figure indicate the number of heavy or moderately growth cultures.

Table 16. State on growth of the enteropathogenic E.coli standard strains and common E.coli in the DHS broth.

Kinds of broth	Concentration of DHS	Enteropathoger	nic E.coli standard strains	Com	mon E. coli
Nutrient broth	4 ug. per ml.	16/18 1)	0.976 ≥ P ≥ 0.626 ²⁾	8/20	0.65/≥P≥0.188
LB broth	ug. per ml.	8/18	0.839 ≥ P ≥ 0.210	13/20	0.848 \geq P \geq 0.392
BGLB broth	/ ug. per ml.	17/18	0.992≥P≥0.698	20/20	1.000 ≥ P ≥ 0.803
EC broth	5 ug. per ml.	16/18	0.976 Z P Z 0.626	15/20	0.908≥ P≥ 0.488

Note: 1) = No. of heavy or moderately growth cultures
No. of cultures

2) = Confidence limits ($\alpha = 1\%$)

Table 17. Antibiotics sensitivity test of the enteropathogenic E. coli isolates.

Sourc		Man		Hog	Dog	Cat	River water	Sea water	Water from septic tank	Sewage in abattoir	Water from abattoir	Oyster	Tot	al	
Antibiot	ics	19	16	68	19	23	2	1	1	2/	10	7	187	(%)	
T	1++=	15301	15 0 1 0	25 /2 23	/4 3 0 2	13	0 0	0 0	0 0	1253	0 6 3	6 0 1 0	76 58 22 31	(40.6) (31.0) (11.8) (16.6)	-
Td	##+-	/5 2 2 0	15	7 25 13 23	/5 2 8 2	8 14	2 0 0	0 0	0 0	/ /2 \$	6 3	6 0 1	71 61 25 30	(38.0) (32.6) (13.4) (16.0)	•
0	##+1	/6 2 /	1100	30 12 25	\$ /2 0 2	5 17 0	0 0	0 0	0 (1 13 4 3	5	6 1 0	42 92 20 33	(22.5) (49.2) (10.7) (17.6)	
d	ササナー	/3 6 0	9 7 0	24 31 5	13 6 0	5 16 1	0 0	0 0	0 0	/3 / 2	2 5 2	2 0	PO 86 9	(42.8) (46.6) (4.8) (6.4)	-
K	ササナー	0 16 3 0	6 9 1	20 38 8 2	7 0	/0 // 2 0	/ / 0	0 0	0 (0	/3 2 2	2 5 2	6 0	56 107 18	(30.0) (57.2) (9.6) (3.2)	
S	サナナー	2 ! !! 5	2 0 0 14	14 19 20 15	0 0 1 8	11 6 2 4	0 0	0 0	0000	8 /0 /	4 5 1 0	6 0 1	61 41 37 48	(32.6) (21.9) (19.8) (25.7)	-
X _P	##+-	1620	12 0 0	22 32 11 3	13	/3 0 0	1 1 0 0	0 1 0 0	0	8 9 3 1	7 3 0	2500	68 99 16 4	(36.4) (52.9) (8.6) (2./)	
Ka	ーナキキ	13 6 0 0	/6 0 0	52 /2 3 /	19 0 0	22 1 0	0 0	0 0	0 0	/ 9 0 0	9 1 0 0	7 0 0	160 23 3	(85.6) (/2.3) (/.6) (0.5)	
Н	##+-	/9 0 0	15 1 0 0	54 9 2 3	19	23	2 0 0	0 0	0000	16 3 2	6 3 1	? 0 0	/63 16 5 3	(2.7) (2.7) (/.6)	

Note:

T = Tetracycline

Td=Demethylchlortetracycline

0=0xytetracycline

C = Chloramphenicol

K=Colistin

S=Streptomycin

Xp=Polymyxin B

Ka=Kanamycin

H= Paromomycin

tt = Very sensitive

tt = Moderately sensitive

t = Sensitive

-= Not sensitive

Note: Figure indicate the number of cultures.

Table 18. Serological classification of antibiotics resistant cultures of isolates.

>		L								1
+	7			¥	Antibiotic	ioti	S C			
serolype	Dources	<u> </u>	Td	0	ਹ	×	S	XP	Ka	_
	Total (%)	w 3	1 30	0 33	/2 (6.4)	6 48 (3.2)(25.7)		(2.1)	1) (5.0)	m 9
0-26:K60(B6)	Hog Cat Sewage in abattoir 2 Wator from abattoir 1		2 8	00 -			7			-
0-28a.c. K73 (B18)	Hog Cat Sewage in abattoir Water from abattoir						-	:		
0-\$5:K\$9(B\$)	Hog Dog Water from abattoir				_	_				
0-864: K61 (B7)										
0-86: K62(L) 0-111: K58(B4)	Cattle /3			~			2-			William Control of Con
0-1172, 5:166 (1811)		2.,	47 47	15			₩-	_		
	Sewage in abattoir 4 Water from abattoir 2						.		REPORTED AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON A	
0-124: K72 (B17)	Man Sewage in abattoir 2 Water from shattoir					The state of the s	7 -			
					7		_	_	_	
0-125: K70 (BIS)	River water Sewage in abattoir Water from abattoir Sextor		_	_				_		
0-126:K71 (B16)	in abattoir				_		_			
0-(27a:K63(B8)	5 in 8									
	Cattle Hos	- 20 924 (1.0 0,000)	- 2	_ ra	_					_
0-(28: K67 (B12)	Cat River water Sea water Sewage in abattoir Nater from abattoir									
0-(36:K78(B22)	in abattoir				m	7	n			
0-143:KX,(B)							w -E			
Noto: Trans	indicate the number	7	+1110	00%1						

Note: Figure indicate the number of cultures.

Table 19. Absorption test of the enteropathogenic E.coli isolates.

Absorbed antiserum	No. of strains (Sources)		Agglutinin titer	Both Oan K agglutinations negative strains
0-111: K58 (B4)	13 (Cattle)	×	(-) (3X) (6X) (12X) 8	2 strains
	3 (cat)	0	(-) (10X) (20X) (40X) 2	
(H8)777 - CH1)	(() ()	×	Hog 1 Hog 1 Hog 1 Hog 1	, , ,
0 112 4.2. 17 00 (17.17)	ROLL +	0	(-) (10x) (20x) (40x) 0 3 0 1 Hog 3 Hog 1	ואסוו ב
0 10 10 10 10 10 10 10 10 10 10 10 10 10	3 (Man) 5 (Hog) 2 (Cat)	×	(-) (3x) (6x) (12x) 5 3 5 1 Hog 5 Man 1 Man 2 Oyster 1 Water 1 Oyster 2	5 strains
(6)(1)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	l (River water) 3 (Oyster)	0	(-) (10x) (20x) 7 6 / Man Man 2 Oyster Hog 5 Cat 2 Oyster River water Oyster	from hog
0-(28: K67 (B12)	3 (Hog)	× 0	(-) 3 40g 3 (-) 3 40g 3	3 strains from hog
0-136: K78 (822)	(goH) 71	×	-) (3X) (6X) 0 (0 Hog 7 H	None
	3 ((at)	0	(-) (10X) (20X) (40X) 0 (1) 7 2 Hog 8 40g 7 40g 2 Cat 3	
11.4 7.1				

Note: Figure indicate the number of cultures.