ウレアーゼ陽性高温性カンピロバクター（UPTC）における
ウレアーゼ構造遺伝子の多型性と配列情報に基づく
クラスター解析

薄井 香織1, 飯田 春奈1, 斉藤 貴雄1, 堀尾 拓矢1, 
村山 洋1, Millar BC2, Moore JE2, 松井 基夫1

1. 麻布大学・環保・遺伝子生物学, 2. N. Ireland Public Health Lab, Belfast City Hospital, N. Ireland

1. はじめに

ウレアーゼ陽性高温性カンピロバクター（UPTC）
はthermophilic Campylobacter lariの生化学的非定型的
なtaxonの1つとされ、近年報告された
Campylobacterのこれも非定型的な1つのtaxonであ
るC. sputorum biovar paraureolyticusと共に、
Campylobacter属細菌の中ではめずらしくウレアーゼ
を産生する細菌である（Matsuda and Moore, 2004）。
細菌性ウレアーゼ及びその遺伝子の構造そしてこれ
らウレアーゼの重要な生理的役割については多くの
報告があるが、Campylobacterのウレアーゼについて
の報告はない。

そこで、本研究においては、UPTCのウレアーゼ
遺伝子に着目し、まずその構造遺伝子の約2kbに渡
る領域をクローニングその塩基配列を決定した。
更に、その配列の類似性の解析及びそれら配列情報
に基づくクラスター解析を行った。

2. 材料及び方法

本研究の解析に用いたUPTC株は、日本の河川水
由来の2株、イギリスの河川水由来のNCTC株2株、
北アイルランドのカモの糸状虫由来の3株、同じく
北アイルランドの河川水及び海水中の二枚貝由来の
3株、そしてフランスのヒト臨床由来分離株2株の合
計12株（Sekizuka et al. 2004）であった。

本研究においては、既に当研究室で行われた
UPTCのウレアーゼの生化学的精製に関する予備的
研究からUPTCの2株のウレアーゼ構造遺伝子A、B
をまず仮説的に想定した。そしてHelicobacter pylori,
H. hepaticus, H. felis, H. mustelae, thermophilic
Bacillus sp. strain TB-90など9種類の報告されている
ウレアーゼ遺伝子の配列情報のアライメントの結果
を考え、ウレアーゼ構造遺伝子A、Bの約2kbに渡
る領域を増幅するためのPCR用degenerate primer 3
対をin silicoにデザインした。PCR増幅後にTAクロ
ーニング及びシークエンシングを行い、その結果
得られた配列の解析はsoftware GNETYX-MAC
version 9を用いて行った。更に、UPTC株12株のウ
レアーゼ構造遺伝子約1.96 kbのヌクレオチド配列
の解析をCLUSTAL W programを用いて行い、デン
プログラムの作成はUPGMA法を用いて行った。

3. 結果及び考察

今回in silicoにデザインされたUPTCの仮想的ウレ
アーゼ構造遺伝子ureA, Bの約2.0 kb領域を増幅す
るためのPCR primer 3対は、ureAの約500 bpを増幅
するu2f/u2r, ureA及びBの約1000 bpを増幅する
u1f/u1rおよびureBの約670 bpを増幅するu3f/u3rで
あった。UPTCの12株からそれぞれ調製された錫型
DNAとこれら3対のプライマーを用いたPCRで、いず
れもほんの餘計なサイズのPCR産物が1％アガ
ロースゲル電気泳動で確認された。次いで、PCR産
物をそれぞれTAクローニング及びシークエンシング
し、プライマーの領域を除く約1.96 kb領域につい
てそれぞれマルチアライメントをした結果、お互いにそれぞれ96.7％以上の配列の類似性を有することが明らかとなった。そしてこれら12株の配列情報を他のすでに報告されているウレアーゼ産生細菌のウレアーゼ構造遺伝子のそれらと比較した所、これら約1.96 kbpの領域はureAの3’側約570 bpとureBの5’側約1360 bpから成ることが示唆された。更に、UPTCのureAとureBの間には12株いずれの場合にも29 bpの非コード領域が存在した。また、これら12株の約1.96 kbp中には合計で140カ所のすべて塩基置換からなるheterogeneous siteが存在し、それはureA中では約10塩基に1カ所で、ureB中では約15塩基に1カ所であり、ureA中の方が明らかに高い塩基置換率であった。

ついて、約1.96 kbpの領域の配列の比較に基づくdistance matrixをKimuraの2-parameter modelのアルゴリズムを用いて計算し、12株間の進化的距離を求めた。そして今回はじめてUPTCのウレアーゼ遺伝子のヌクレオチド配列情報を基に12株間のアンドログラムを作成した。その結果UPTCの12株は複数のクラスターを構成していることが明らかとなった。この様な結果は、UPTCはウレアーゼ構造遺伝子の配列情報に基づいて、遺伝的に大変多様に富んでいることを示している。そして、これは我々がすでに31株のUPTC株を対象として7つの酵素を指標としたmultilocus enzyme electrophoresis typingの手法を用いて報告した結果（Matsuda et al. 2003）とよく一致している。

本研究はUPTCについての初めてのウレアーゼの遺伝子型別に関する分子遺伝学的研究であり、更に1つの細菌taxonに関して10株以上という多くの株を対象として細菌性ウレアーゼ遺伝子のgenotypic heterogeneityを明らかにした初めての報告である。しかし、UPTCのウレアーゼ構造遺伝子及びアクセサリー遺伝子を含む実際のウレアーゼオペロンの全体像は本研究では明らかではなく、それらについては今後の課題である。

4. 文献