ウシ胎児の血清蛋白に関する研究

木内 明男
ウシ胎児の血清蛋白に関する研究

太内 明 男
目次

第Ⅰ章 緒言
第Ⅱ章 材料及び方法
 1. 材料
 2. 方法
第Ⅲ章 成績
 1. 血清総蛋白量
 2. セルロース・アセテート膜電気泳動分析
 2.1. アルブミン
 2.2. α-グロブリン
 2.3. β-グロブリン
 2.4. θ-グロブリン
 3. 免疫電気泳動分析
 4. 交叉免疫電気泳動分析
 5. 抗血清の吸収
 6. ウシ胎児血清の硫安塩析
 7. ウシ胎児血清のゲル滲透
8. ブタ羊水のゲル滲過
9. ウシAFPの分離・精製
9.1. 抗原・抗体複合体よりのAFPの分離・精製
9.2. アフィニティー・クロマトグラフィーによるAFPの分離・精製
10. ウシ・ブタ・ヒトAFPの免疫学的の差異性
11. 血清および羊水中的AFP
11.1. 胎児血清中のAFP
11.2. 新生児血清中のAFP
11.3. ウシ羊水中的AFP
11.4. 成牛血清中のAFP
11.5. ブタ羊水中のAFP
12. 血清蛋白成分の分離・精製
12.1. α2Mの分離・精製
12.2. Tfの分離・精製
13. 血清蛋白成分
13.1. α2Mの定量
13.2. Tfの定量
13.3. IgGの定量
第IV章 考察
第V章 結語
謝辞
参考文献
図表
第一章　緒　言
哺乳動物の胎児性蛋白に関する研究は、1944年Pedersonにより仔牛血清中に胎児特有的蛋白Fetuinの存在を報告して以来始められた[14]。Fetuinは胎児の成長に密接に関与する成長因子としてその分離・精製が試みられたが成功をみなかつた[21,28]。1962年Marrら[73,78]によってはじめて精製に成功した。

Fetuinはその後の研究により、胎児血清中ばかりでなく成牛血清中にも存在することが明らかにされたが[11,64,110,112,127,128,129,130,131,138,140]、胎児特異性蛋白の存在を示唆した点で注目に値するものといえる。

α-フェトプロテイン（以下AFPと略す）は、電気泳動上α位に易動度をもつ胎児特有な蛋白で、1956年Bergstandが沈紙電気泳動法により胎児血清と成人血清の蛋白分画を比較検討し胎児には存在しない成分Substance Xを発見したが、最初の報告である[12]。
次いで1963年Abelevらが移植性マウス肝癌細胞がマウスAFPを産生することを報告[3]、ヒト肝癌においても同様の現象が起ることがTatarinovにより見い出され、原発性肝細胞癌への診断的価値が注目されるに至った[62, 64, 80, 113, 137, 141, 145]。

わが国においては、西ら[92]をはじめとして多くの研究者がAFPの分離・精製を試み、AFPの物理化学的、免疫学的性質の解明にとりくみ、臨床に応用され多くの成果をあげている[24, 25, 26, 27, 39, 40, 42, 43, 54, 55, 57, 111, 136, 147]。

ヒトでは、肝癌にたいする特異的診断法として、Ouchterlonny法、Mancini法などのゲル内沈降反応が用いられていたが、1971年にradioimmunoassay法が開発され、肝炎、肝硬変、妊娠などでAFPが血中に増加し[51, 55, 96]、また痕跡程度であるが正常成人にも存在することが明らかとなった[116, 123]。

AFPの獣医学領域での利用分野として、家畜の腫瘍たとえば肝癌は稀な疾病でありAFPを利用した診断法は余りに現実性に欠き、そこで考えられるのが臨床繁殖への応用であるが、ウシでは胎児AFPが母体に移
行するかが問題として提起される。正常妊娠で移植があろうば妊娠診断に応用できるし、通常では移植せずにも胎盤に異常が起こりその透適性が亢進することにより胎児血中AFPの母体血中へのあり得るならこれをチェックし得る。また妊娠異常（胎児異常）の際にヒトでは羊水、母体血中AFPの変化が明らかとなっていることを考え合わせ、牛の異常産への応用も考えられる。

以上のことから著者は家畜、とくにウシのAFPに着目し、その分離・精製に特異的方
法（アフィニティー・クロマトグラフィー）を用いるこない。胎児血清、羊水、新生児血
清、妊娠牛血清、雄牛血清、またアカバネ・ウイルス接種実験感染牛、山羊血清のAFP
について検査した。

家畜血清蛋白の成育における分画値の報告は少々が、胎児の成長に伴なう血清蛋白分画
の動態はヤギ、ヒツジ[10]、ブタ[59]で報告されているのにすぎず、ウシ胎児血清蛋白
白についてはの報告はない。そこでウシ胎児の血清蛋白分画について検討し、あわせて血清蛋白成分のうち代表的な蛋白であるトランスフェリン（Tf）、α2-マクログロブリン（α2M）を分離・精製し特異抗体血清を得、胎児の成長に伴なう動態を明らかにし、さらに免疫グロブリンG（IgG）についても検索したのでその成績を報告する。
第二章 材料及び方法

1. 材料
実験に供した材料は、厚木食肉センターに搬入された妊娠牛（ホルスタイン種、年齢2～9才）38頭、胎児40頭（雄18頭、雌16頭、性別不明6頭）うち、双胎2例、羊水14例、雌牛32頭、非妊娠牛86頭と新生児3頭のベ7頭、妊娠経過を追跡した例の頭のベ40頭（妊娠3ヶ月から出産まで）、および農林省家畜衛生試験場で妊娠牛、山羊にアカバネ・ウィルスを接種した経過血清3頸のベ15頭、異常産母牛（石川、岡山県）各2頭、ブタ羊水24例を以下の実験に供した。

材料血清は胎児については、頸靜・動脈血液もしくは心臓穿刺により得た。成牛では頸静脈血液を用い、採血後37℃に1時間放置し、3,000rpm、15分間遠心し血清を分離し測定時まで－20℃に保存した。羊水は、3,000rpm、10分間遠心し、血清と同様に保存した。
2. 方法

1. 蛋白量の測定
 a. 血清総蛋白量の測定
 供試血清の総蛋白量は、屈折蛋白計（FHK）を用い測定した。
 b. 標準AFP, α₂M, Tf, IgGの蛋白量の測定
 標準AFP, α₂M, Tf, IgGの各蛋白量は、
micro-Kjeldal法により測定した。
 C. 分離泳動、プロマトグラフィーの際の測定
 分離泳動の抽出蛋白液の蛋白量は、Lowry法（75）によって測定し、プロマトグラフィーの際には分光光度計（日立101）280nmで計測した。
 d. AFP, α₂M, Tf, IgGの定量
 AFP, α₂M, Tf, IgGの定量は、Mancini法（77）により行なった。

実施法

1) あらかじめ量を検討した抗血清と、15
%アガロース（半井化学 Agarose A - 45）溶液（pH 8.6, μ = 0.05ベロナール・ベロナール Na 緩衝液 + 0.1％アジ化ナトリウム）を恒温槽（55℃）で混和する。

2）ガラス板2枚（1枚は寒天塗布用）の間に、厚さ1mmのアクリル板で枠をつくり、これに抗血清含有アガロースをピペットで慎重に入れる。

3）ゲル板が完全に固ったら、約15~20mmの間隔に直径3mmの穴をあける。

4）ゲル板表面を若干乾燥させた後、既知量の抗原溶液を4段階の希釈溶液をつくり、それぞれ2μlずつマイクロシリンジで正確に入れる。また検体も同様に注入し、必要があれば希釈する。

5）湿潤箱にゲル板を入れ、室温に48時間以上水平に保つ。

6）十分に沈降輪が形成したらノギス(1/20mm)で直径を測定。もしくは反応にあずからない蛋白を洗い流し、乾燥後染色して測定する。
7）抗原量を横軸に、沈降軸の半径の2乗を縦軸に目盛り、検量線を作成し、蛋白量を求め

8）AFP高濃度用は10％、低濃度用は2％、α2Mは2％、Tfは5％、IgGは2％となるようにそれぞれ抗血清を15％アガロース溶液に加える（Fig. 1-a, 1-b, 2-a, 2-b, 3-a, 3-b）。

2. セルロース・アセテート膜電気泳動法
セルロース・アセテート膜電気泳動は、Separax（富士フィルム）を使用し、セルロース・アセテート膜電気泳動装置（コスモ）によりおこなった。絶縁液はベロナール・ベロナールNa緩衝液（pH8.6、μ=0.06）を用い、血清塗布量は0.8μl（蛋白濃度により適宜増減する）、膜の中央cmあたり0.6mAで50分間泳動後、ポンゾー3Rで染色し、透明化にはデカリンを用いて、デンシトメトリー（コスモ・スーパーフリック、500nm）して血清蛋白分解値を得た。
3. 免疫電気泳動法

免疫電気泳動は、Grabarらの方法を変えておこなった。凝集用Oxoid Agar (Oxoid Limited)を1％にベロナール・ベロナールNa (pH8.6，μ=0.05) 緩衝液に溶解し、0.1％の割合でNaN₃を加えた。泳動は定電流3 mA/cmで2時間から2時間半通電後、抗血清溝を切りとり、抗血清を注入，湿潤箱にて1〜2日間反応させた後に沈降線を観察，必要に応じて写真撮影した。また保存に際しては反応・終了した凝集板を生食につけ，1日に3〜4回生食を交換，3日間隔に洗い余分の蛋白を除去し乾燥後アミドブラック10Bで15分間染色後，メタノール・酢酸水溶液にて脱色して保存した。

3. 凝集ゲル内沈降反応

Ouchterlonyの方法によりベロナール・ベロナールNa緩衝液 (pH8.6，μ=0.05) もしくはリン酸緩衝液 (pH8.0，μ=0.1) に凝集を1％もしくはアガロースを1.5％になるように溶かし, 0.1％の割合でNaN₃を加え，1.5mmの厚さに重層
した。試料を入れたラテックス箱で反応させ、室
温で24〜48時間静置し、観察必要に応じて写
真撮影した。

4. 交叉免疫電気泳動法

Laurell法[70]を一部変えて行った。通常
の免疫電気泳動に順じて寒天板に抗原孔3
mmをあけ20〜50μlの血清を試料とし、3mA/cm
で2時間30分通電する。通電後ゲルを抗原孔
から1mmずつの5mm巾に切りとり、抗牛胎児血
清ウサギ血清10%含有、1.5%アガロース板厚
さ1mm上に慎重にうせる。これをさきの泳動
と直角方向に冷却しつつ2mA/cmで約4時間通
電し反応が十分に行なわれたら写真撮影後、
必要に応じて染色保存する。

5. 抗血清の作製

抗血清の作製は種々の方法をとり入れて行
ないとくに、抗胎児血清については平井[44]
によった。免疫動物は体重3Kg前後の健康な
ウサギ（なるべく雄）を1つの抗原に対して
3羽ずつ使用した。各種抗血清の作製は以下
の免疫スケジュールの手順に従った。

5.1. 抗全血清の作製

5.1.1. 抗牛全血清ウサギ血清の作製

臨床的にまた血清蛋白に異常を認めない非妊娠牛10頭の血清をプールし免疫用抗原とした。プール血清をウサギ1羽あたり0.5mlとし滅菌生食で倍に希釈し等量のFreund Complete Adjuvantとを連結針で結んだルアーロック・シリンジでエマルションをつくり，これな"water in oil"の状態になるまでくり返す。出来たエマルションを初回免疫としてウサギ足跡及び内16ヶ所および全身皮下に注射する。1週間後，同様なエマルションを全身皮下に注射する。初回免疫から2週間後，プール血清を滅菌生食で約5倍に希釈しウサギの状態を観察しながら外耳縁静脈より注射しブースターとする。1週間後，試験的採血を行ない免疫電気泳動および寒天ゲル内沈降反応で沈降線およびカパ価を判定し，十分に抗体価が上がっているならば全採し，血清を分離後0.1％にNaN₃

12
を加え4度もしくは-20℃に保存した。また抗体値が不十分な場合には再度免疫し十分な抗体値が得られるまで続けた。

5.1. b. 抗牛胎児全血清ウサギ血清の作製
5.1. b. i. 抗牛胎児（4ヶ月令）全血清の作製

4ヶ月令胎児血清を5頭プールし免疫用抗原とした。この際血清の希釈はおこなわず1羽あたり0.3mlの血清に等量のFreund Complete Adjuvantを混和免疫した。スケジュールは、5.1. a.と同じ。

5.1. b. ii. 抗牛胎児（10ヶ月令）全血清の作製

10ヶ月令胎児血清を2頭プールし免疫用抗原とした。作製方法は、5.1. b. i.と同様。

5.2. 各種抗血清の作製
5.2. a. 抗ウシAFPウサギ血清の作製
5.2. a. i. 4ヶ月令胎児血清を厚さ3mmの寒天板で免疫電気泳動し、抗血清溝に抗ウシ胎児（4ヶ
日令）ウサギ血清を加えて5日間反応させた
ろちにAFPの沈降線を注意深く切り取り凍
室（4℃）にて生食中で1週間洗う。この際
1日に3〜4回洗浄液を交換する。十分に洗
洗したゲルを細切後、滅菌生食に浮遊させFre
eund Complete Adjuvantとエマルシヨンをつ
くり免疫する。1週間後に免疫し十分な抗体
価&抗血清ができたら採血する。

5.2. a. ii. アフィニティ・クロマトグラ
フィーで分離・精製したAFPを1羽あたり
2mgあてFreund Complete Adjuvantとエマルシ
ヨンをつくり、初回免疫する。1週間後に全
身反応に免疫する。初回免疫より2週間後に
ブースター注射を行ない1週間後に試採血し
抗血清が十分な抗体価があれば、採血し不
十分な場合には追加免疫した。

5.2. b. 抗ウシδMウサギ血清の作製

gelfiltration，分離泳動で分離・精製し
たδMを1羽あたり、1mgあて免疫用抗原と
して用いた。
5. 2. C. 抗ウシ胎児ウサギ血清の作製
リバロール沈殿、DEAEセルロース・カラムクロマトグラフィー、ゲル洗過で分離・精製した汁を1羽あたり2 mgあて免疫用抗原として用いた。

6. 抗血清の吸収操作
抗ウシ胎児血清ウサギ血清の吸収は、非妊娠牛プール血清でおこなった。抗血清1容にプール血清を2容から3容まで段階的に加え37℃で1時間インキュベートしたのち、4℃に一昼夜放置後、10,000 rpm、15分間遠心し、上清に検討を加える。

7. アミノ酸の分離・精製
アミノ酸はSchulzeらによって単離命名されたもので、その分離・精製はエタノール分画のFrⅢ-0から、また硫安塩析、リバロール沈殿などから出発する方法などがある。今回は、安方に[9]の方法を一部変えておこなった（Fig. 4）。CaCl₂の存在下でdextran sulfateを作用させてLipoproteinを除去した。この
際除去し得る Lipoprotein は Low density Lipoprotein であり High density Lipoprotein は除去できない。ついで硫安の 50 ％飽和でできた沈殿を Sephadex G-200 でゲルロ過し、その第 1 峰を集めて濃縮し、再度口径の細いカラムでゲル沪過した。この材料を分離泳動によって分画した（Fig. 5）。分離泳動は分子量にあまり差がなく、電気泳動上易動度のことなる蛋白成分の分離に貢献されている。支持体としては Pevikon C-870（M & S Instrument Inc）を用いた。緩衝液はベロナール・ベロナール Na 緩衝液 (pH8.6, \[\mu = 0.05\]) を用い、泳動用 chamber の断面積 1 cm²あたり 3 mA で 20 時間、氷室で通電した。通電終了後 1 cm 中すつのブロックに切り出し、生食で 3 回洗い十分に蛋白を抽出出した。抽出した蛋白は紫外吸収で測定できないので、Lowry 法によって測定し各分画を濃縮後、免疫電気泳動により検定した。

8. 仔の分離・精製

16
血清から精製された AFP（α-フETP）の分離・精製

9. A F P の分離・精製

9. 1. 抗原-抗体複合体から A F P の分離・精製
AFPは分子量、等電点共に血清アルブミンに著しく近い、したがって通常の物理化学的方法（非特異的）つまり、イオン交換クロマトグラフィー、Sephadexによるゲル過では絶品をとり出すことがほぼはなはだ困難なだけではなく、他の蛋白の混入をさけるためには収量を犠牲にしなければならない。

そこでAFP分離・精製の方法として、特異抗体血清と胎児血清を形成させ、これをpH 18で解離させAFPを得る西ら[41, 92]の方法を用いた。Fig.7は本法のflow sheetである。本法中、抗原と抗体は最適比で混ずること、また抗原-抗体複合体の解離・結合の操作をくり返し行ない、抗原・抗体以外の変質物を十分に追い去ることの2点が肝要である。

また、pH 18というかなり強い酸性に暴露する時間は極力短いことが望ましい。
一種の吸着クロマトグラフィーであるが、その担体が分離しようとする物質に対して特異的な吸着作用を示すという点で他の吸着クロマトグラフィーと性格を異にし、また分離能も非常に高い。不溶性の担体一目的物質結合体は、十分に洗浄し雑物質と分離、ついて環境条件を変えると純粋な目的物質が得られる。Immuno adsorbent としては、イオン交換樹脂、セルロース誘導体、不溶性タンパク質ポリマー、赤血球ストローマ、Sepharoseなど多くのものがある。扱い易い点で CNBr-activated Sepharose 4B（pharmacia Fine Chemicals）を Immuno adsorbent として用いた。CNBr-activated Sepharose 4B に結合させる抗体には、抗血清の IgG 分画を使用すべきであるが、今回はα-クロプロリン分画を用いた。また理想的には、抗原・抗体複合体より分離した特異抗体のみを用いれば最も適当であると
する。CNBr-activated Sepharose 4B と抗血清α-クロプロリン分画との Coupling と AFP 溶

19
出の細目は、Fig. 8 に示した。

10. ルシ胎児血清 AFP の硫酸塩析
8 週令胎児血清を用い、飽和硫酸を各々 30, 40, 50, 60, 70 % 飽和となるように加え、4 ℃ に 1 晩放置後、3,000 rpm、20 分間遠心後、沈殿を PBS に溶解後 PBS に対して透析し、全量を 0.5 ml とし、上清は PBS に透析後、クロジオンバックにて濃縮 0.5 ml として、mancini 法により各 AFP 量を求めた。

11. ルシ胎児血清のゲル溶過
8 週令胎児血清 2 ml を pH 8.0、0.1 M トリス-塩酸緩衝液 + 0.2 M NaCl に透析後、Sephadex G-150, 2 × 90 cm、流速 20 ml/hr でゲル溶過し、各分画を濃縮、Ouchterlony 法で抗 AFP との反応性をみた。また免疫電気泳動で検索した。

12. ブタ羊水のゲル溶過
ブタ羊水の 50 % 飽和沈殿をルシ胎児血清と同様にゲル溶過をおこない、各分画と抗ヒト AFP との反応性をみた。また免疫泳動でも検索した。
第Ⅲ章 成績

1. 血清総蛋白量

胎児血清総蛋白量は、胎令2ヶ月より10ヶ月の平均が31±10 g/dLであった。また胎令を追ってみると、2ヶ月令15±0.7 g/dL、3ヶ月令24±0.4 g/dL、4ヶ月令24±0.4 g/dL、5ヶ月令30±0.4 g/dL、6ヶ月令26±0.2 g/dL、7ヶ月令40±0.7 g/dL、8ヶ月令34±0.3 g/dL、9ヶ月令36±0.4 g/dL、10ヶ月令42±0.6 g/dLとなり、胎令の進むに従って総蛋白量は増加し、10ヶ月令では2ヶ月令のおよそ3倍の蛋白量となった（Table 1-a, Fig. 9-a）。

生後10日以内の新生児血清総蛋白量は51±0.4 g/dLであった。

2. セルロース・アセテート膜電気泳動分画値

2.1. アルブミン

アルブミンは月令別に2ヶ月令32.10±2.00 %、0.45±0.18 g/dL、3ヶ月令37.95±0.25 %、0.89±0.13 g/dL、4ヶ月令46.01±5.40 %、1.
0.9 ± 0.22 g/dL, 5ヶ月時58.80 ± 2.95 %, 1.79 ± 0.43 g/dL, 6ヶ月時60.64 ± 6.61 %, 1.54 ± 0.07 g/dL, 7ヶ月時67.77 ± 4.00 %, 2.74 ± 0.66 g/dL, 8ヶ月時63.76 ± 4.99 %, 2.17 ± 0.22 g/dL, 9ヶ月時61.50 ± 6.00 %, 2.22 ± 0.04 g/dL, 10ヶ月時63.75 ± 1.25 %, 2.69 ± 0.44 g/dLとならなった。2ヶ月時ではアルブミンが血清総蛋白量の約30％を占めており、胎児の成長に伴って増加し、10ヶ月時では2.69 ± 0.44 g/dLと約6倍の増量となり、血清総蛋白量の増加は、アルブミンの増加によるところ大である。

2.2. α-グロブリン
α-グロブリンは、2ヶ月時54.90 ± 5.90 %, 0.76 ± 0.27 g/dL, 3ヶ月時53.65 ± 0.65 %, 1.27 ± 0.21 g/dL, 4ヶ月時46.66 ± 5.13 %, 1.14 ± 0.25 g/dL, 5ヶ月時33.11 ± 3.19 %, 1.00 ± 0.20 g/dL, 6ヶ月時33.46 ± 4.86 %, 0.87 ± 0.19 g/dL, 7ヶ月時23.50 ± 3.21 %, 0.92 ± 0.04 g/dL, 8ヶ月時28.32 ± 4.74 %, 0.97 ± 0.19 g/dL, 9ヶ月時28.78 ± 5.27 %, 1.03 ± 0.18 g/dL, 10
月令 9.50 ± 1.60 %, 0.41 ± 0.13 g/dl となっ
た。

2.3. β - グロブリン
β - グロブリンは 2 ヶ月から絶対に増加し、
10 ヶ月令で約 26 倍量となる。免疫電気泳動の
所見から β 位に泳動される血清成分を主
体であり、胎児の成長に伴なう β - グロブリ
ンの増加は T の増加によるものである。

2.4. α - グロブリン
α - グロブリンは少しの例で僅かに認めら
れる程度である。
（Table 1-a, 1-b, Fig. 9-a, 9-b）
生後 10 日以内の初乳摂取新生児の各蛋白分
画は、アルブミン 49.29 ± 7.92, 2.49 ± 0.459/dl,
α - グロブリン 18.80 ± 4.27 %, 0.95 ± 0.239/dl,
β - グロブリン 1.30 ± %, 0.73 ± 0.139/dl,
α - グロブリン 17.30 ± 4.68 %, 0.89 ± 0.29 g/dl
と初乳から免疫グロブリンを摂取したことによ
り胎児期には明確に認められなかったα -
グロブリン分画が認められた。
3. 免疫電気泳動分析
4ヶ月令胎児血清を免疫電気泳動で分析すると、抗ウシ胎児（4ヶ月令）全血清ラサギ血清との間には12本の沈降線が常にあるのでアルブミン、α1-Lp, α1-Atr, A FP, α2M, α2-Lp, Tfの7本の沈降線が同定可能であった。A FPはα1とα2グロブリンの中間の位置に泳動され、inter α位の蛋白と確認された（Fig.10）。

4. 交差免疫電気泳動分析
交差免疫電気泳動法により、判定できる沈降帯は14で免疫電気泳動法による沈降線の12本より多い数となった。この方法では複雑な成分とくに、通常の免疫電気泳動では判定できないα位の血清蛋白の分離がよく、同様の抗血清で濃度（アガロース溶液にたいする）が変わらないなら、山の高さはその成分の濃度に比例するので試料中のγγ γ成分の定量が同時にできる利点がある（Fig.11）。
5. 抗血清の吸収
抗ウシ胎児全血清ウサギ血清と非妊娠牛プール血清の最適比は1:1であった。免疫電気泳動、Ouchterlonyで検討し、ウシAFPに対する特異抗血清であろうことを確認した。

6. ウシ胎児血清AFPの測定塩析
飽和塩析による胎児血清AFPの沈殿で30％飽和では沈殿がみられずに、70％飽和ですべてのAFPが沈殿した。アルブミンのcontaminを避けるためには、50％飽和で41％の回収率と回収率は犠牲にしなければならない（Fig.12）。

7. ウシ胎児血清のゲル通過
ウシ胎児血清をSephadex G-150でゲル通過すると、成牛血清と同様に3つの峰が認められ、抗ウシAFPウサギ血清とのOuchterlony法では、第3峰のみと反応した。免疫電気泳動で検索すると第1峰はα2M、第3峰はアルブミンが主体であるところから、ウシAFPはアルブミンとほぼ等しい分子量を有することが確認された（Fig.13）。

25
8. ブタ羊水のゲル沈過
ブタ羊水を濃縮、飼和硫酸50％飼和沈殿のSephadex G-150でゲル沈過ごするとちゅうの峰に分離された。各分画を抗ヒト AFPウサギ血清とOuchterlony法で検索すると第3分画と沈降線の形成がみられた。各分画と抗ブタ血清ウサギ血清との免疫電気泳動で、第3峰にはアルブミンが存在するところから、ブタAFPはアルブミンと分子量がほぼ等しいことが確認された。また第4、5分画は抗ブタ血清ウサギ血清と沈降線を形成せず羊水に特異的な蛋白であることが示唆された（Fig.14）。

9. ウシAFPの分離・精製
9.1. 抗原・抗体複合体よりのAFPの分離・精製
吸収抗ウシAFPと胎児血清との最適比は16対1であった。pH1.8、0.1Mブリシン-塩酸緩衝液による溶出パターンは、Fig.15に示した。第1峰は、変性・会合した抗体分子の重合体であり、第2峰は抗体分子、第3峰にA
FPが存在するので、その部分を集めpHを中性に戻してクロシオンバックで濃縮し、PBSに対して透析する。この成分は少量の抗体を中性にして沈殿は生ずることなく可溶性の抗原・抗体複合体を形成していると考えられる。ついてPBSで緩衝化したSephadex G-150、2×90cmでゲル泳過する(Fig. 15)。第1峰は抗体分子であり、第2峰が目指すAFPであった。第2峰を濃縮後に免疫電気泳動、Ouchterlonyにより、AFP総合であることが確認された。本法はAFPを特異的に精製する方法としてはすぎれているが、大量の抗血清を消費するという欠点があった。

9.2. アフィニティー・クロマトグラフィーによるAFPの分離・精製

本法による実験の1例をあげると、凍結乾燥CN Br-activated Sepharose 4B 1gあたり約100mgの抗血清およびグロブリン分画が結合し、このadsorbent 1gは2〜3mgのAFPを結合する容量があった。胎児血清はカラムにゆ
の収穫流し、結合にあらかじめなかった非吸着成分を十分に洗い流すことが肝要である。

本法は溶出に30分間あれば十分であり、低いpH24に暴露する時間が余程短縮された。溶出パターンはFig.16.に示した。またこのカラムの抗原結合容量はカラムを繰返し使用しても殆んど低下しない。カラム作製以来1年以上の使用に耐えており収量は70%~80%と極めて満足すべきものであった。

尚精製AFPのセルロース・アセテート膜電気泳動の結果はFig.17.に免疫電気泳動の結果はFig.18.に示した。

10. ウシ・ブタ・ヒトAFPの免疫学的交差性

抗ヒトAFPウサギ、ウマ血清はウシ胎児血清、ウシAFPと反応し沈降線を形成する。またブタ羊水、ブタAFP粗分画とも反応した。これらの事実からウシAFP、ブタAFP粗分画、ヒトAFPはpartial identityを示す(Fig.19)。しかしながら、市販抗ヒトAFP
ウマ血清（ミドリ十字）はブタAFPとは沈降線を形成するが、ウシ胎児血清、ウシAFPとは反応しない。また抗ウシAFPウサギ血清は、ヒトAFP、ブタAFPとは反応しなかった。

II. 血清および羊水AFP

11.1 胎児血清AFP

胎児血清AFPは2ヶ月令ですでに5.87±0.46 mg/mlと総蛋白量の30％を占める血清蛋白として存在し、アルブミンを凌駕している。ついて3ヶ月令で全胎内期間を通じて最高の7.07±0.14 mg/mlとなり4ヶ月令で6.00±0.55 mg/ml、5ヶ月令で4.90±0.82 mg/ml、6ヶ月令で2.61±0.76 mg/ml、7ヶ月令で1.11±0.12 mg/ml、8ヶ月令で0.75±0.09 mg/ml、9ヶ月令で0.37±0.01 mg/ml、10ヶ月令で0.14±0.02 mg/mlと胎児の成長について減少した。

双胎例ではBF101で一方の2.02 mg/mlにくらべ他方は1.78 mg/mlと両者にわずかな差が認められ、6ヶ月令均2.61±0.76よりわずかに高かった。
低い AFP量であった。BF 10 22のフリーマーチェン例では両者に量的な差違はなかった。

羊水に異常が認められるBF 10 29（8ヶ月令, 3）では, 8ヶ月令の平均0.75±0.09mg/mlにくらべて2.22mg/mlと3倍のAFPが測定された。また胎児死直後とみられるBF 10 34では10ヶ月令の平均0.14±0.02mg/mlにたいして, 0.42mg/mlと低い値を示した。またAFPの量は性による差は認められなかった（Table 2, Fig. 20）。

11.2 新生児血清AFP

新生児血清は検体が3頭, ベイ7頭と少なかった。出産時血清中AFPは0.072mg/mlと3ヶ月令最高時の100分の1以下に減少し, 1日目0.077±0.009mg/ml, 2日目0.066±0.005mg/ml, 6日目には0.041mg/mlとなり10日目には検出できなくなった。

ウシAFPの生物的半減期は上記定量値から計算により求め5.26日となった（Fig. 21）。

30
11.3. ウシ羊水 AFP
羊水中 AFP は検出した例数が 2 月令 1 例，3 月令 1 例，4 月令 5 例，5 月令 1 例，6 月令 1 例，7 月令 2 例，9，10 月令各 1 と少なかった。
各月令の定量値は，2 月令 0.063 mg/ml，3 月令 0.066 mg/ml，4 月令 0.061 mg/ml，5 月令 0.051 mg/ml，6 月令 0.047 mg/ml で 8 月令以後は Mancini 法の感度以下であった。羊水 AFP は，胎児血清 AFP の動態と非常によく似ていた（Fig. 22）。
11.4. 成牛血清 AFP
成牛血清中 AFP は，検査血清総数 156 頭（雄 32，雌 124）について検査したうち，雄牛 32 頭は全例検出されなかった。雌牛（妊娠牛，非妊娠牛）については，BM1029，アカバネ・ウィルス接種実験牛 No622（いずれも妊娠牛）の計 2 頭について認められた。
BM1029 については，その胎児 BF1029 血清 AFP の定量のところでものべたが，羊水に
異常が認められるもので、同月令平均値の3倍というAFPが測定されたものです。また、アカバネ・ウィルス接種実験牛No.622については、1975年4月14日妊娠初期にアカバネ・ウィルスを接種5月27日に流産（3ヶ月令）した症例であり、Mancini法により沈降輪が認められたは5月5日の血清であった。

これら2例の血清は、抗ウシAFPウサギ血清と沈降線を形成しなかったが抗ウシAFPウサギ血清で吸収操作することにより、沈降輪の消失が認められることから、濃度としては、はなはだ少ないがAFPと確認された（Table 3. Fig. 23）。

12. 血清蛋白成分の分離・精製

12.1. α2Mの分離・精製

Sephadex G-200 50×75cmカラムの溶出パターンはFig. 24に、再クロマット：Sephadex G-200 20×90cmカラムの溶出パターンはFig. 25に分離泳動パターンはFig. 26に示した。分離・精製した総合免疫電気泳動、Ouchterlony
の結果はFig. 27に示した。
12.2. TFの分離・精製
DEAE-セルロース・カラムクロマトグラフィーのStep wise による溶出パターンはFig.28
に、Sephadex G-150. 2.0 x 90 cm の溶出パターンはFig. 29に示した。また分離・精製した純
品の免疫電気泳動、Ouchterlony の結果は、Fig. 30に示した。
13. 血清蛋白成分の定量
13.1. α2Mの定量
胎児血清α2Mは2ヶ月令 0.736 ± 0.119 mg/ml, 3ヶ月令 1.524 ± 0.246 mg/ml, 4ヶ月令 1.154 ±
0.266 mg/ml, 5ヶ月令 1.308 ± 0.256, 6ヶ月令 1.468 ± 0.123 mg/ml, 7ヶ月令 1.692 ± 0.199 mg/ml, 8
ヶ月令 1.880 ± 0.350 mg/ml, 9ヶ月令 2.686 ± 0.421 mg/ml, 10ヶ月令 2.430 ± 0.769と胎児の成長とともに増加し、ことに2ヶ月から3ヶ月令にか
けて約2倍増加となったのが特徴的な変化で
たった。また成牛78頭の平均値は4.86 ±
0.171 mg/mlと胎児血清α2Mの平均1.565 ± 0.5% coli

33
胎児乳直後とみなされるBF1034では、10ヶ月令にもかかわらずその平均24.30±0.769mg/mlの約半量1.37gmg/mlしかなかった。
また双胎妊娠2例のうちBF1011、A、B、(共に雄)はそれぞれ13.78、13.52mg/mlと差違は認められず6ヶ月令の平均14.68±0.123mg/mlよりわずかに少なかった。BF1022、A、B、9ヶ月令ではフリーマーチン例であり、雄が25.85mg/ml、雌が22.28と9ヶ月令の平均2.686±0.421を下まわり、雌のdMが少なかった(Table4、Fig.31.)。

13.2.仔の定量
胎児血清単は、2ヶ月令1.215±0.850mg/ml、3ヶ月令24.60±0.340mg/ml、4ヶ月令24.73±0.486mg/ml、5ヶ月令24.58±0.268mg/ml、6ヶ月令24.33±0.248mg/ml、7ヶ月令24.23±0.372mg/ml、8ヶ月令25.48±0.333mg/ml、9ヶ月令3.135±0.105mg/ml、10ヶ月令3.905±0.516となった。2ヶ月令から3ヶ月令に著しく増加し、その後は胎
児の成長にかかわらず一定しており、9ヶ月、10ヶ月頃にはふたたび増加し、成牛56頭の平均3302±0.134 mg/mlのレベルとなった。

 Tfは胎内と成長過程ですでに成牛レベルに達しており、α2Mとは異なる動態を示した。尚、胎内乳直後とみられるBF1034では、168 mg/mlと10ヶ月令平均3905±0.516 mg/mlの約半量しかなかった。また多胎妊娠例ではとくに差は認められなかったが、BF1022ではα2Mと同様に半量が少なかった（Table 5, Fig.32）。

13.3. IgGの定量

胎児血清IgGは検索した総数37例中6例16.2%に認められた。その値は低くも1.05 mg/ml、高いくも1.79 mg/mlの範囲にあり、その主体はIg G1であるが、BF1034ではIg G1だけでなくIg G2も認められた（Table 6, Fig.33）。
第4章 考察
従来、非特異的な方法では分離、精製が困難であったAFPの精製は、西らの抗原-抗体複合体をpH 18で解離させてゲル液過しそれにっぽって中性で、再クロマトによる方法が開発され急速な進歩をみた[84]。pH 18というdrasticな条件に耐え得ることが必要条件として必要なことであるが、この条件にAFPは十分に答えるもったであった。その後、リパノール沈殿、硫安沈殿法を使用し粗AFPを抽出、ついて調整用ディスク電気泳動により精製が試みられた[45, 46, 53]。しかしながら抗血清を大量に消費すること、または複雑な操作を必要とするうえに、回収率が少ないので理由で十分に満足のゆく方法ではなかった[55]。著者も抗原-抗体複合体をトリス塩酸緩衝液pH 18で緩衝化したSephadex G-150でゲル液過し中性で再クロマトグラフィーすることによりAFPを得たが、大型の氷室がないなどの悪条件で、分離もよくなく、
Sample量も少量であるために十分な収量をあげられなかった。
ここに登場した新しい方法つまりImmunoadсорベントとしてCNBrで活性化したSepharose 4Bを使用するaffinity chromatographyによりその精製が容易になった。affinity chromatographyは1968年Quatrecasesらが、CNBrでアガロースを活性化後、酵素阻害剤をリガンド（特異性決定基）として導入することにより、各種酵素の精製に成功して以来、急速に発展しつつある方法で、酵素以外に抗原と抗体、あるいはホルモンなどの生理活性物質とその標的蛋白（リセプター）などがある[7, 18, 19, 34, 61, 109, 119, 126, 146]。
AFPの精製に本法がとり入れられるに及んで[99]純度の高いAFPが得られるようになった。獣医学領域でのaffinity chromatographyの利用は、免疫グロブリンの精製[20, 91, 132]、ウイルス性精製など[63]と、わずかに応用されているにすぎず基礎的な研究
の域を脱していない現状である。著者の成績では、リガントとして抗血清のα-ブロブリン分画を使用したが、AFPの回収率は70～80%と極めて満足すべきもので、抗体を酵素にさらす時間が短いためカラムを繰返し使用が可能であり、少量の抗血清より大量のAFP精製が可能になった。またカラムを4℃に保存すれば少なくとも1年間は使用できる。

ヒト、ラット AFPの物理化学的性質は西らにより詳細に研究されている[93, 98, 101, 102, 103]。ヒトAFPは超遠心分析によれば、沈降定数4.50 S、分子量64,600、紫外部の吸収は278 nmにピークがあり、1%塩化ナトリウム溶液の吸光度は5.30、また等電点はpH4.7である。またSDSディスク電気泳動法による分子量は69,000と報告されている。ヘパトoma患者血清より分離したAFPとヒト胎児・AFPに性状の違いは見られない[100]。AFPの物理化学的性質は、アルブミンに著しく近く非特異的な方法で分離・精製が困難なことも
うなずけるものである。著者はウシAFP標品について詳しく検討を行なっていたが、 Sephadex G-150 でのゲルろ過によりアルブミンのピークと同じくして AFP が溶出されること、また Ouchterlony 法による double diffusion で沈降線がアルブミンと同じ位置に形成されることからも、その分子量はアルブミンに近似していると考えられる。また同様にブタ羊水イゲルろ過により、アルブミンのピークと同じくしてブタ AFP が溶出され、ブタ AFP はブタアルブミンと分子量が近似していると考えられる。

Fetuin とウシ AFP の関係については Kisher らによりま、たく免疫学的な差異がないことをえた、PAS reaction, αM 過ヨウ素酸にたいする態度などが異なることなどが指摘されており、Bergmann の観察により Fetuin は成牛血清に約400μg/mlと存在することとは、胎児血清の抗血清から Fetuin にたとえる抗体を除去できることからも十分に裏付け
られることである。
各種哺乳動物にはそれぞれにAFPが存在し、その易動度はアルブミンからβ-グロブリン間にあり、ヒト、ハムスター、ラットはα1位と最も早い易動度を有し、α1からα2位に向けて、ウシ、ヤギ、ヒツジ、ブタのAFPは易動し、ネコ、イヌ、ウサギはα2からβ、に向けて易動する。モルモットAFPは最もおそい易動度をもつ179。
免疫学的交叉性については主に抗ヒトAFPを用いて検索され、Gilhinらは抗ヒトAFPサギ血清は、ウシ、ウサギと反応しないと報告しているが、西ら(95, 97, 100)によれば抗ヒトAFPウマ血清は広い交叉反応を示し、ウシ、ヒツジ、ブタ、ウサギ、イヌ、ネコ、ラット、マラス及び同種であるウサギを含め検索した全ての動物と反応したと報告している。一方抗ウシAFPウサギ（吸収）血清を用いたKithierら(67)の成績では、ヤギ、ヒツジ胎児血清とよく交叉し、ブタ、ヒ

40
胎児血清と弱い交叉免疫性を示すことが報告されている。著者がOuchterlony法で検査した結果、抗ヒトAFPウサギ、ウマ血清はウシ胎児血清、ウシAFPと反応して沈降線を形成する。またブタ羊水、ブタAFP粗分画と反応し、ヒトAFPとはpartial identityを示す。しかしながら、市販抗ヒトAFP（ミドリガ）ウマ血清は、ブタAFPとは沈降線を形成するが、ウシ胎児血清、ウシAFPとは反応しない。これについては、この抗血清が共通抗原部分を認識させるまで免疫して得た抗体か否かの差異によるかも知れない。このような以上に哺乳動物AFPは種属を超えて共通する抗原決定基を有する他に、それぞれ種属に特異的な抗原決定基も有している（95, 97）。

ウサギ、イヌ、ラット、マウスをそれぞれの新生児血清で免疫しても抗体（沈降抗体）は出現しない。成熟動物を同種のAFPで免疫しても、かといって自己が胎生期に有していたものであり免疫学的寛容の状態にあり抗体は
産生しないと考えられる。しかしヒトAFPで免疫して得たラマおよびウマ抗血はそれぞれ同種であるラマAFPおよびウマAFPとも交叉反応を示す[95]、つまり異種蛋白であるヒトAFPを投与された動物は免疫応答を起こし抗体を産生する。ヒトAFPと動物AFPは共通する抗原決定基を有しており、これらに対しても抗体が産生されるため、同種AFPとも反応する抗体が生じたもので、類似する抗原を投与することにより免疫学的寛容が解除されたものと理解される。

AFPが生物学的に果たしている機能は不明である。ラットAFPはエストラジオール、エストロンと強い結合性があるが、エストロゲン、プロゲステロン、テストステロンとは親和性がない。また、リンパ球にphyto-
hemagglutinin を加えると芽球化が起こるが、この際にAFPを添加しておくと、この作用が抑制されるという報告がある。Cadwellらはヒト胎児のAFPが in vitro で免疫反応を
抑制すると報告したが、これが事実だとすると胎児や新生児にみられる疫学的観察の成立にAFPが関与している可能性がでてくる。したがってAFPが妊娠に際して起こる疫学的不都合な現象を抑制するように作用していることも考えられるが、これからの研究をまだなければならない。

AFPの生成部位は、哺乳類では主として肝と卵黄がようでつくられる。ほかに胃腸管でも少量のAFPが合成される。サメでは逆に胃腸管がふもとのAFP産生部位で卵黄がようでのAFP合成はみられない。Gittlinらはこれを進化の過程でAFP合成の中心が胃腸管から肝、卵黄がようへ移行していていったものであるとも考えている。

AFPが出現する胎児肝、再生肝あるいは癌はいずれも細胞分裂増殖がさかんな組織で、臨床的にも肝炎とくに激症肝炎や肝硬変で肝細胞障害につづく再生期に一致してAFPの一過性上昇をみることがあり、これらの
事実は「AFPは分裂、増殖する細胞によってつくられる」という半井の説を支持するもうとえよう。実際、分裂する細胞がAFPを産生するという考えは、正常肝にも細胞分裂が認められることから、正常動物血清に存在するAFPの起原を説明するのにもつまようがよい。

AFPの異化は完全に突明されていない。しかし、血管内ポークに対する異化率（分別異化率）、すなわち血清中の半減期は判明している。半減期についてGitlinら[31]は新生児血清AFP値から35日と、向島ら[88]は原発性肝癌小児に術後血清AFP値動態から369日と、また両ら[43]は原発性肝癌術後のAFPの消失速度から6日と算定している。

一方家畜AFPの半減期については、詳細な報告はないが、ウシでその新生児血清中濃度の減少から252日と算定している[22]。著者も同様な方法で半減期を算定し、5.26日
という結果を得た。その他の動物についてはZijlkowski [150]により、1匹で2.88日、ネコ2.26日、ハムスター1.37日、ウサギ1.47日、モルモット2.82日とそれぞれ報告され、各種動物の半減期は、出産時、新生児、成熟度によっていているとしている。AFPの異化様式はFreemanの血清蛋白異化学分類法で、血清アルブミン、γ-グロブリンと同じ型に属すると石井ら[52]は報告している。

ウサジ胎児AFPの報告は、Karlsson[59]により報告され体長60mm、60日齢ではアルブミンを含むかにうわまゆりブロック泳動で分離できるほどの量6～7mg/mlとピークに達し、出産時には1～2mg/mlに減少する。ヒトとは異ったピークが早まり胎令中期に最高に達し、出生時に1～2mg/mlと非常に高い値として存在するのはラットのAFPの消長と似ている。

ウシ胎児血中のAFPの消長に関しては、阿部ら[2]の報告があるのみで、それによると4ヶ月令で在胎期間中最高の6.14mg/ml
となり胎児の進むにしたがって下降し，出生後2週間で消失するとしている。著者の特異的抗血清を用いたMancini法での成績では，2ヶ月令ですでに587土0.63mg/ml，3ヶ月令では全在胎期間を通じて最高7.07土0.20mg/mlの大さに達し，以後減時減少し，出生時にはピーク100分の2にまで減少，生後約10日以内に血流から消失する。AFPの生理的役割については前述したように詳かではなかったが，胎生2，3ヶ月令では血中アルブミンの濃度より上まわっており，この時期における浸透圧の維持，キャリアー蛋白としての役割をはたしていることは十分に考えられることである。また，性によるAFPの量的な差はなく，双胎における値も特に違いは認められない。

今回検査した胎児うちで，BF1029は8ヶ月令にもかかわらず2.22mg/mlと8ヶ月令平均の3倍も，AFPがあり，母体血中に僅ではあるがAFPを認めた。またBF1034（10ヶ月児）は胎内孔直後と推察される例で，10ヶ月令で
肝に約0.14±0.02 mg/mlの3分11量0.042 mg/mlと少ないAFPが検出された例で，すでに体内でのAFP合成が停止していると推察される。

ヒト胎児におけるAFPの研究は多く，血中濃度の推移は12～13週にピーク(3 mg/ml)に達した後，次第に低下し，生下時には数μg/ml程度となり数週以内に検出し得なくなる[4]。合成が開始される時期は明らかではないが，4週の胎児血液の電気泳動分析ですでにアルブミンより更多量のAFPを認める報告があり，ウサについても筆者らの測定で15ヶ月令胎児に5.41 mg/mlとより量のAFPが認められたことからも，かなり早い時期より合成されていることは明らかである。またラット胎児血液についての疫部ら[144 4]の成績では，出生を契機としてAFPとアルブミンの逆転関係をみる結果から，胎児期へモグロビン，HBFの合成が，出生を契機に成人型へモグロビン，HbAの合成に切り換わる様子によく似ている。
と報告している。

先天性奇形に関しては、ataxia telangiectasia、チロジン血症、先天性胆道閉鎖症でAFPの増加がみられている。ataxia telangiectasiaにおいては44～2800ng/mlにおよぶ増加がほとんどすべての症例において観察され、これはこの疾患が組織分化の障害によっておこるとする仮説を支持するものである。つうじ組織ないしは臓器の分化・成熟が障害される結果、胎生期に特異的な蛋白の生成が持続されているのではないか。チロジン血症の小児における血中AFPの増加が主役は障害された肝が主役をなすと考えられ、先天性胆道閉鎖症においては長期にわたる重篤な黄疸が肝細胞の成熟を障害したためではないかとの説がある。また睾丸あるいは卵巣の悪性奇形腫うち、胎児性腫瘍性つともおよば、Ouchterlony法でも高率にAFPが血液中に証明される[48, 68, 118, 124, 135]。

このように胎児の成長、生死などと密接な
平衡関係のある上に、月令による興味あるパターンを示することは、胎児成長代謝過程との間に、何等かの関連性のあることを充分に推測させるものがある。かかる面では、出生前の胎児自体のAFP・活性を如何に促すかが今後も一つの課題といえるが、ヒトにくらべて胎児摂取の目願的な制約の少ない家畜では、その例外数を増やし各月令の正常な値を求めることが急務といえよう。しかしながら妊娠中羊水の血液を採取する際は不可能なわけではないので、その面からも羊水中AFPからアプリーチがなされている。ヒト羊水ではGitlin [31] が初めて確認したが、その起源については妊娠初期では胎児尿、妊娠末期では母体循環からの由来と推測されている。羊水中のAFPの定量あるものは母体血中と羊水中のAFP・活性によりて胎児の状況を示すが、先天性奇形の予知をせんとする試みだが、北欧の研究者によって精力的に進められ日常検査として取り入れられるに至っている [6, 13, 16]。
羊水中のAFP値が相当する胎生期。羊水の正常值をはるかにこえる場合には無脳児ないしはSpina bifidaなどの疑いがある【104】。

Seppälä【121】によりど母体血中および羊水中のAFPがいずれも高い時は長期にわたるfetal distressや胎児や子宮内死が考えられる。②母体血中正常で羊水中高値のさいにはmeningomyelocele, hydrocephalus，Spina bifidaあるいは他に、胎児蛋白が脊髓液中から羊水中に浸出していることが考えられる。③母体血中が高く羊水中正常のさいにはなんらかの原因で、胎児から母体側に胎児蛋白が流れこんでいる可能性があるという。また、羊水中のAFP上昇はこれら奇形の他に、双胎児、胎児の死、胎児の子宮内出血などでも観察されている。このように、ヒトでは羊水AFPの研究が臨床に多くとり入れられているが、家畜に関する報告は、著者の知り得る限りでは一つもない。今後の
報告では各月令の例数が少ないが羊水中AFPの動態を知るには新しき知見と思われる。ウシ羊水中AFPは2ヶ月令で62.5μg/mlと存在し、3ヶ月令で66μg/mlと最高に達し、4ヶ月令で61.25μg/mlとわずかに低下し、5,6ヶ月令では50μg/mlとなる。8ヶ月令以後ではMancini法の感度以下となり感知し得なくなる。この動態は胎児血中AFPと消長と酷似してあり、ピークも4ヶ月令と一致した成績がでている。ヒトではピーク値が30μg/mlとウシにくらべて約半量であるが、羊水中AFPが胎児から移行によることを考えるならば、ヒト胎児のピークが3mg/mlにくらべて7mg/mlと思うことからも十分に考えられることである。ウシ羊水AFPに関する研究はそう途についたばかりであるので、臨床に応用するためには症例を多くする必要がある。

ヒトの妊娠に伴う母体血中AFPの報告は測定感度の増加、及びRadioimmunoassay、赤血球凝集反応などを用いて、感度が前者で
は20 ng/ml。後者では100 ng/mlとなってから急速に進歩した[5, 81, 82, 150]。これらのが成績によれば妊婦血中には3ヶ月令で認められ以後増加し8ヶ月令でピークに達し（約300 ng/ml）、出産時には約200 ng/mlと低下し20日で消失する[38, 52, 90]。

胎児例では、双胎、卵胎児例ともに正常胎児例の2倍以上との高値を示す[86, 87]。また、子宮内胎児死例では、AFP値はいずれも400 ng/ml以上というかなりの高値を示し、無胎児や体表奇形例では、正常範囲内または低値を示す[29, 135]。一方、原発性肝細胞癌に際してはAFP陽性率は90%前後で、Mancini法で検出された最高値は10.9 mg/mlとヒト胎児3ヶ月の約3倍以上を濃度で出現する。また、AFP非産生原発性肝細胞癌も存在している。原発性肝細胞癌に関する報告は、AFP研究の引き金となったことから、報告は非常に多い[23, 30, 37, 58, 60, 84, 105]。一方、ウシ成牛血清中AFPに関する報告は、
1968，1974年Kithierら（65，67）による
原発性肝細胞癌患者血清中のAFPの証明が
あるのみで，その後の研究はない。Kithierら
によれば4例の原発性肝細胞癌患者のうち
2例にOuchterlony法でAFPが検出され，
次に降線は胎児血清中AFPと完全に一致した
とし，他2例はヒトにおけるAFP非産生
原発性肝細胞癌における症例としている。ま
た種々の疾患，健康牛，仔牛では検出されな
かったとしている。筆者が今回の観察で成牛
にAFPを認めたのは2例で，他2成牛はす
べて陰性であった。2例はMancini法で陽性と
であったが，Ouchterlony法では次に降線は形成さ
れて，抗AFP血清で吸収後，再度Mancini
法で検討し次に降線の消失を認めたことからAFPと
確認した。そのうち1例は，妊娠8ヶ月
母牛でホルスタイン種，血清総蛋白量7.5
g/dl，溶血（-），Lipemia（-），剖検所見では特
に病変がでず，手水に異常を見たもので
ある。この胎児は8ヶ月頸部児にしかみられず
平均の3倍量のAFPが測定されたものである。この母牛の血清蛋白分解像からは、β-トリンクというと語られる、LDHアイソザイム分析で、正常よりはるかに高値のLDH5が認められた[10]、尚アカバネ・ウイルスに対する抗体価は陰性であった。また他に例は、家畜衛生試験場で実験的にアカバネ・ウイルスを妊娠牛、妊娠山羊に接種したうち1例で、AFP陽性と出たNo.622は妊娠2ヶ月(12.4.75)に接種し、5月27日にミイラ変性胎児を流産したところ、Mancini法で陽性を認められた5月5日採血、血清総蛋白量6.8g/dl、溶血(-)、Lipemia(-)であった。

アカバネ・ウイルスは、1972～1975年か母年夏から冬にかけて、乳用牛、肉用牛いずれを問わず、流産、早産、死産、および先天性・奇形（関節臓曲症と内水頭症、Arthrogryposis - Hydranencephaly）を伴った異常子牛の分婉といわれる異常産があいついで発生した疾病のほぼ原因ウイルスであるとさ
れているものである。特徴的なことは、母体自体に分娩まで異常を認めないことからこのウイルスの病原性はかなり弱いものと推定される。したがって、ほとんどの胎児は感染後も死亡することなく発育を続けるが、ちょうど胎児の脊髄の発育期に感染をうけたまではその脳内に病巣が形成され、その神経節細胞が浸された結果、その支配下にある筋肉や異常をきたし、二次的に四肢・関節屈曲、脊柱の彎曲など一奇形を主じ、また大脳の形成期に感染を受けてもかか、その形成不全を生じ、大脳欠損あるいは水頭症を生じたものと推定される[30, 36, 50]。また本病類似疾患の発生が外国においても報告されている[139, 143]。

今回の実験では、Spina bifida, hydrocephalusを伴った症例に出会わなかったが、異常が認められた胎児から、母体血中にAFPが移行することが、ラジにおいて初めて認められたことの意義は大きいものである。また、
臨床面への応用としては，妊娠そのものを含むより，胎児異常の早期発見・対応へと母体血中AFPの検出・感度をあげ，羊水の成績とを比較検討するならば薬剤学臨床で限りなく過剰となることは想像に難くない。

胎児期における血清蛋白像に関する研究は，試料の採取が困難なため，十分な成績を得がたくほとんどない。

総蛋白量は胎児と発育とともに著次増加する。すなわち，胎令2ヶ月ごろは約1.5 ±0.65g/dlにすぎないが，後半期に増加傾向が著明となり分娩時までには約4.2 ±0.60 g/dlに達する。
また分娩後初乳摂取10日目まで，平均は5.1 ±0.44g/dlとなる。総蛋白量増加は胎令前期では，AFPによっているが，3ヶ月令以後はAFPの減少につれてアルブミンが顕著に増加し，総蛋白量の増加はアルブミンによっている。各分画についてみると，α-プロブリンは絶対量としては，1g/dlと変化はないが，相対量は2ヶ月令では55%，総蛋白量30%半
を占めるこの分画がAFPによることを考えると重要な位置付けが必要であろう。胎児発育にともない相対量は減少し10ヶ月以降25％に下降し、産後10日目までで78％になったが、β-グロブリンの絶対量は不変となり、胎生期以後増加することを考え合わせれば理解できる。β-グロブリン、相対量に胎生期を通じて変化はないが、絶対量ではわずかながら増加する。胎生期ト-グロブリンはわずか1例で認められるが、その絶対量は無視できるほどわずかである。また初乳摂取後調べグロブリンの消長に関してはまだ報告があるが、同様に急激に上昇し絶対量0.90±0.29g/dl、相対量で12.3±4.68％となる。このト-グロブリンは、初乳中免疫グロブリンの腸管からの吸収によることは明らかであると20。胎児血清の免疫電気泳動的解析はまったくと
えるほどのされていない。著者はこの点についても解析を試みたが、胎児性蛋白AFPを除いて、胎生前期の血清中には若干の沈
降線が常に認められ、このうちアルブミン、α₁-LP, α₁-ATr, α₂-Lp, α₂-M, Tfの沈降線が同定可能であった。またヒト胎児血清蛋白成分として認められるGc, Ceaについては沈降線を同定し得なかったことによりヒトで認めているGcはその発現型が母体血と異なること、またCeaはその出現位置が成人とは異なり、胎児特有の型を示すことを証明し得なかった。しかしながら胎生前後期にα₁-Lpと同じ蛋白が出現しており、これらγ蛋白は胎児自身により合成され、その発見は明らかではないがいずれにせよ胎児成長にとって必要欠くことのできないものであることが十分に推察しうる。とくにα₁領域にα₁-Lp、ヒα₁-ATrが胎生期にすでに発現と同じくも、明瞭な沈降線として認められるのは興味ある所見としてとらえられた。
Tfは胎生2〜4カ月で120 mg/Nと存在し3〜9カ月頃には2倍に増加し一定した濃度を保ちつつあるが、8カ月頃でわずかに増加し、9カ月
令で 3.13 mg/ml、10ヶ月令では 3.9 mg/ml と成牛レベルに達した。同様の出現は 40 日令から確認されている [17]。成人における正常値は、25～35 mg/ml であり、性差および日内変動は認められなかったが、母令と共に減少するといわれている。また錦谷氏、妊娠、幼児、肝炎で増加がみられ、溶血性貧血および低蛋白血症では減少することが知られている。また Gitlinらの胎児血中テスト値は、胎生 2ヶ月までで 0.3 mg/ml、出生時 1 mg/ml であると報告している [32]。阿部らの報告ではウシ胎児血中期で 3.5 mg/ml、後期になると 6 mg/ml と高値であった。雌牛は 5.8 mg/ml、雄牛では 8.8 mg/ml 平均としている。雌牛が雄牛にくらべて低いけれども泌乳と関連づけて [1]。

また胎児期直後とみられる BF1034 で、168 mg/ml と 10 ヶ月令平均の半分以下であった。オメガ は、胎生 2ヶ月で 0.736 mg/ml、3ヶ月令で 2 倍に増加して 9 月後 8、9ヶ月令でふたたび増加し、10ヶ月令ではわずかに下降した。成
牛の平均は3.5 mg/mlでヒトの正常値2.20～3.80 mg/mlと似た値を示した。またヒトでは、ネフローゼ症候群、肝硬変、糖尿病、感染症などで増加することが知られている。また、近年になってこの蛋白の生化学的知見がふえ、トリプシン、プラスミン、エステラーゼなどのプロテアーゼ作用に影響を及ぼし、また成長ホルモンやインシュリンと結合する作用があるなど、生理的機能も次第に明らかになってきた。小児のα2-Mを測定すると生後次第に増加し7～2才に最高値を示し正常成人値の2～3倍に達する。その後漸次減少し思春期になって正常成人値を示すようになる。この増加傾向は小児期の成長曲線よく類似しており、α2-Mと成長の間に密接な関連性を有するという報告もみられる[8, 9, 69]。一方、Ganrotはtrypsin-protein esterase（TPE）活性を用いて種々の動物血清中のαーマクログロブリンを測定した成績から、ラットおよびウサギでは成長するにつれて逆に
増加を示し、妊娠では成長するにつれて減少するが、わずか增加するに過ぎないと報告している。したがって、ヒトα2-Μとは異なる態度を示しており、α2-Μが成長ホルモン作用をもっているとは考えられない。

受疫グロブリンG (IgG) は、家畜（ウシ、ヒツジ、ヤギ、ブタ、ラマなど）では胎盤の構造から母体血中からか移行はなく、生後初乳を飲むことによって、はじめて腸壁から吸収され、血液中に出現することがおきらかにされている [20]。したがって、ウシの場合、胎児期に母乳と微細な微生物に感染しながさぎり、血液中には受疫グロブリンGが出現しないと考えられている。

異常産子牛の血清にはIgG、IgMなど、受疫グロブリンGが高濃度に証明された [50]。一方、イスラエルとオーストラリアにおいても Anthrocytophagosis – Hydranencephaly症候群を伴った初乳未摂取子牛の血液、脳水、胎体発生細胞などにIgG、IgMなど、受疫グロブ
リンの存在が報じられている[139, 143]。阿部ら[2]も、と育場材料胎児の11%に約を認めず、範囲も0.11～0.44mg/mlとし、母体から移行があり得るとしている。筆者も胎児血中IgG1検出・定量を試みその検索総数37例中6例16.2%に認め、特に1例、0.05mg/ml、2例で1.79mg/mlであった。その主体はIgG1であるがIgG2も認められるものがなった。

これIgGが母乳でどこにあるか、つわり母体なのか、胎児が生成しているのか決定を下すことはできないが、就中2ヶ月令胎児2例のうち1例に1.79mg/mlと多量に検出され、もう1例にも微量程度に認められたことから、2ヶ月令胎児では免疫グロブリンの生成能は認められていない[47, 120]、また胎盤構造の確立が不十分であることがから母体血中より移行したと考えられる。5ヶ月令以後の胎児にIgGが認められる例ではすでに免疫グロブリンの生成能を有するところから、
しかしながら何らかの微生物感染を受けた証拠がないで断言はできないが、この傾向は胎児自身が発生していると考えられるが、何かの原因で胎盤の透過性が異常にあると、母体血流中の何かが胎児血中に入ったりという考え方も否定できない。
第V章 結 語
ウシ胎児血清蛋白とくに、胎児性蛋白AFPを特異的方法：アフィニティ・クロマトグラフィーを応用して分離・精製し、その特異抗血清を作製し、胎児血清、羊水、新生児血清、成牛血清、アカバネ・ウィルス実験感染妊娠牛、山羊経過血清について検索した。またウシ胎児血清についてセルロース・アセテート膜電気泳動分析、免疫電気泳動分析を試みた。更に胎児血清AFP、チオシミカルを定量し次のような成績を得た。
1. 血清総蛋白量は、胎児の発育とともに増加した。
2. セルロース・アセテート膜電気泳動分析から、血清総蛋白質量の増加はアルブミンの増加によることが明らかとなった。特徴的変化は、アルブミン分画から2ヶ月後から4ヶ月後では血清蛋白全体主流を占め、アルブミンを核としていた。この時期のアルブミンはその主成分がAFPでありその変化を反映して
3. 受験選択遊動分析では、抗ウシ胎児血清を用いて常に12本以上、血清蛋白が確認され、同定可能な蛋白は、アルブミン、d1-Lipoprotein、d1-Antitrypsin、AFP、d2-Macro-globulin、d2-Lipoprotein の7種類であった。 AFP はd1 とd2グロブリン1 中間に泳動され、inter α位1蛋白と確認された。

4. 抗原・抗体複合体トリッAFP の分離・精製では、抗血清を大量に消費し収量も低いために実用ではなかった。

5. アンティジークログラマーによるAFP の分離・精製は、その回収率70〜80%と極めて満足すべきものであった。また抗AFP 結合カラムは、回収使用しても抗原結合容量は殆ど低下せず、1年以上の長期使用に耐える。

6. ウシ、ブクAFP の分子量はアルブミンに近似していた。
7. ウシ・ブタ・ビトAFPは抗体AFPと反応し、互いに免疫学的交叉性が認められた。ウシAFPとブタ・ビトAFPは反応しなかった。

8. 胎児血清AFPは2ヶ月令までに認められ、3ヶ月令にピーク（7.07±0.14mg/ml）があり胎児の成長につれて減少し、生後10日目で血流中より消失した。

9. 羊水AFPは2ヶ月令までに認められ、3ヶ月令にピークがあり8ヶ月令以後は検出されなかった。

10. 成牛血清AFPは、妊娠牛1例、アカバネ・ライフス実験感染妊娠牛経過血清1例の2例について認められた。

11. 胎児血清中AFPは、3ヶ月令及び9ヶ月令に増加をみたが、中期ではプラトー状態であるおり、出生前に成牛レベルに達していた。

12. 胎児血清AFPは3ヶ月令で増加し、その後減少増加したが、成牛レベルには達しなかった。

66
13. 胎児血清の16%にIgGが認められ、その主体はIgGであった。
以上べたようにラノン胎児血清には他の哺乳動物と同様にAFPが存在し、その分離、精製には、アフィニティクロマトグラフィーが極めて有効であった。
成牛血清中に1例ではあるがAFPが認められたことから、胎児の異常が母牛に反映すると思われる。もう少し胎児AFPが母体血中に出現することから、今後AFP濃出の感度を上げることにより、胎児の異常を早期に発見できるもっと確信する。
謝　辞
稿を終わらにあたり、御指導御校閲を賜わりました麻布歯科大学家畜衛生学教室、田中専一教授、実験に際し、御指導を賜わりました本庄利男講師、青木貞治講師及び材料採取にあたり御協力いただいた厚木倉内センター職員各位、また研究を進めるにあたり、助言ならび捐血をお手伝いいただきました北海道大学医学部生化学教室、平井秀松教授、西信三博士、アカバネ・ウィルス実験感染牛経過経過をいただいた農林省家畜衛生試験場、製剤研究部、ウィルス製剤研究所、指導下二室長ならび黒木均主任研究官に深謝いたします。さらに麻布歯科大学家畜衛生学教室職員各位に感謝いたします。
参考文献

(24) 遠藤徹夫 (1972). α- フェトプロテイン研究の今後の問題点. 日臨, 30, 1209-1214.

(26) 遠藤徹夫 (1975). 胎児性蛋白の臨床的意義 - 代謝, 12, 33-42.

(30) 篠田輝雄・竹中俊男・沖田 極・西岡幹雄・原田俊則・篠山蔵行・重田幸二郎・児玉隆浩・岡本佳千 (1972). α- Fetoproteinの原発性肝癌特異性について. 日臨, 30, 1179-1185.

(40) 服部 信・小林健一・沢武紀雄 (1976). α-フォトプロテイン. MEDICO, 7, 2732-2735.

(52) 石井 勝・戸沢辰雄・井上英士・池原英夫・馬場茂明・望月真人・泉川 塚 (1972). 妊婦血清中のα-フォトプロテイン. 医学のあゆみ, 83, 529-530.
（53）石井 勝・井上英士・戸沢良雄・池原英夫・馬場茂朗（1972）。
α- fetoproteinの検出法と臨床的意義。日臨，30，1220－1229。

（54）石井 勝・戸沢良雄・池原英夫（1974）。α- fetoprotein。最新医学，129，1662－1671。

（55）石井 勝（1975）。二抗体法および固相法によるα- fetoproteinの
Radioimmunoassay。最新医学，30，815－819。

（56）石井 勝（1976）。α- fetoprotein抗血清を用いた一元平板免疫拡散法によるα- fetoproteinの測定。最新医学，31，1815－1822。

（57）金井弘一（1975）。胚胎兎性蛋白の産生と生物学的活性。代謝，12，
27－32。

（58）金山正明・小泉精策・牧瀬淳子・松田裕太郎・原田恵美子（1972）。
原発性肝癌におけるα-Fetoproteinの検出限界。医学のあゆみ，
80，17－18。

（59）Karlsson，B.W.（1972）。α-Fetoprotein in serum of the
developing pig foetus。Life Sci.，11，Part II，169-176。

（60）藪西洋一・水戸池郎・宮川 明・佐々木憲一（1972）。AFPと肝癌の
臨床病理的検討。日臨，30，1186－1193。

（61）加藤典之進（1971）。生体試料の分析法（XIV）affinity chromatographyによる生体高分子の精製（その1）、（その2）、（その3）、
（その4）。代謝，8，696－702，772－777，849－853，938－946。

（62）Keller，R.，and Tomasi，T.B.（1976）。Alpha-fetoprotein
synthesis by murin lymphoid cells in allogeneic reaction。

（63）Kenyon，A.J.，Gander，J.E.，Lopez，C.，and Good，R.A.
（1973）。Isolation of aleutian disease virus by affini-
ty chromatography。Science，179，187-189。

（64）Keyser，J.W.，Kohn，J.，and Ward，A.W.（1976）。Standard-
isation of alpha-fetoprotein assays。Lancet，1015。

（65）Kithier，K.，Valenta，Z.，Trefny，D.，and Zizkovsky，V.（1968）。
Zum vorkommen des foetalen alpha-globulins im serum des
rindes mit carcinoma hepatocellulare。Pathologia Vete-
rinaria，5，473-474。

(84) 三浦 健・杉浦光雄・石田正純・遠藤康夫・織田敏次 (1972). 原発性肝癌の肝動脈内注人化学療法とα-Fetoproteinの消長．日臨, 30, 1201-1208.

(90) NAWAL. EL- SAMARRAI・杉下知子 (1972). 母体血清中のα-Fetoprotein. 医学のあゆみ, 83, 141-142.

(99) 西 信三・平井秀松 (1972). α-Fetoproteinのaffinity chromatographyによる精製およびその結晶化. 生物物理化学, 16, 303-306.

(102) 西 信三 (1975). α- フェトプロテインの生化学的性質. 代謝, 12, 3-8.

(103) 西 信三・平井秀松 (1972). α-Fetoproteinのaffinity chromatographyによる精製およびその結晶化. 生物物理化学, 16, 303-306.

(107) 野村 恒・横澤玄夫 (1967). 問題、未熟児、新生児の血球免疫電気泳動像. 生物物理化学, 12, 52-53.

(134) 田沼勝雄・戸谷拓二・渡辺泰宏・堀啓 (1976). α-Fetoprotein の消長を追跡できた小児産児平白血病・α-Fetoproteinの検索と Yolk Sac Tumorとの関連性—外科, 38, 1036-1038.

(136) 高橋 陽・池辺満夫・赤保内良和・前田 貫・谷内 昭・安斎哲郎・和田武雄 (1970). 胎児組織ならびに血清蛋白の免疫化学的研究−第2報−. 生物物理化学, 14, 300-301.

山形敬一・上野達雄・熊田博克・渋井和夫・坂坂勝良・林仁守 (1972). α-Fetoglobulinによる早期診断とスクリーニング. 日臨, 30, 1194ー1200.

（149）吉岡秀雄・磷都淳一・篠原紀美代・庄野和子・斎藤史郎（1977）．
α-fetoprotein測定法に関する検討—特に赤血球凝集反応とラジオイムノアッセイについて一. 衛生検査, 26, 13-19．

（150）Zizkovsky, V., Masopust, J., and Prokes, J. (1971). Feto-
protein level development in the first days of life of
some mammals. Protides Biol.Fluids.Proc.Colloq.,18,
49-54.
Fig. 1-a. Precipitin rings formed by diffusing pure bovine AFP, diluted bovine fetal sera.
Fig. 1-b. Calibration curves of bovine AFP
Fig. 2-a. Precipitin rings formed by diffusing pure bovine α_2M, bovine fetal sera and adult sera
Fig. 2-b. Calibration curves of bovine α_2M
Fig. 3-a. Precipitin rings formed by diffusing pure bovine Tf, bovine fetal sera and adult sera
Fig. 3-b. Calibration curves of bovine Tf
Fig. 4. Procedures for the preparation of bovine α_2M
Pevikon C-870

Wash several times with distilled water
Wash several times with Veronal-veronal Na
buffer pH 8.6, $\mu = 0.05$

Packed in chamber

Sample application 3.5 ml

Electrophoresis, 3\(\mu\)mA/cm\(^2\), 20 hrs at 4 C

Cutting off the block 1 cm and wash 3 times
with saline

Each fraction's protein concentration was measured with Lowly method (500nm)

concentration and dialysis against distilled water

Purified α_2M

Fig. 5. Procedures for the preparation of bovine α_2M by the zone electrophoresis
Fetal sera 100ml + 350ml 0.4% Rivanol
centrifuge at 10,000 rpm 10min

precipitate
(discard)
supernatant
dialysis against PBS
70% saturation with SAS
centrifuge at 10,000 rpm 10min

precipitate
(discard)
supernatant
dialysis against PBS
PBS
50% saturation with SAS
centrifuge at 10,000 rpm 10min

precipitate
(discard)
supernatant
dialysis against PB
0.005M, pH 8.0
DEAE cellulose column chromatography
0.005M PB (pH 8.0)
0.01 M PB (pH 7.4)
0.02 M PB (pH 7.4)
concentration and dialysis
against Tris-HCl buffer+0.2M NaCl
Sephadex G-150 gel filtration
collect first peak, concentration
and dialysis against distilled water
Purified Tf

Fig. 6. Procedures for the preparation of bovine Tf
Fig. 7. Procedures for the precipitation of AFP for anti-AFP - AFP complexes

1. **Fetal serum**
 - Add antiserum against AFP at optimal precipitation
 - Stand for 60 min at 37°C
 - Centrifuge at 3,000 rpm 15 min in the cold

2. **Supernatant (discard)**
 - **Precipitate**
 - Wash 3 times with cold 0.15 M NaCl solution
 - Dissolve in 0.1 M Glycine-HCl buffer pH 1.8
 - Centrifuge at 10,000 rpm 15 min

3. **Supernatant (discard)**
 - **Precipitate**
 - Neutralize to pH 7.0 with 0.4 M Na₂HPO₄
 - Stand for 60 min at 37°C
 - Centrifuge at 3,000 rpm 15 min

4. **Supernatant (discard)**
 - **Precipitate**
 - Wash 3 times with cold 0.15 M NaCl solution

5. **Antigen-antibody precipitate**
 - Dissolve in 0.1 M Glycine-HCl buffer pH 1.8 and applied to the Sephadex column

6. **Sephadex G-150**
 - **AFP**
 - **Anti-AFP**
1. CNBr-activated Sepharose 4B (10g) washed and swelled several times on the glass filter with 0.01 M HCl
2. Washed several times with coupling buffer: 0.1 M, pH 8.4, Borate-borax buffer + 0.5 M NaCl
3. Stirred with anti-AFP γ-globulin fraction (20ml) for 4 hrs at room temperature
4. Washed with coupling buffer for to remove uncoupled protein and treated with 0.1 M Ethanol amine
5. Washed with 0.1 M, pH 4 Acetate buffer and coupling buffer
6. Sepharose 4B coupled anti-AFP γ-globulin fraction applied on column
7. Washed with coupling buffer several times
8. Fetal bovine serum applied on Sepharose 4B column
9. Washed with coupling buffer under 0.04 (280nm)
10. Eluted with cold 0.1 M, pH 2.4 Glycine-HCl buffer + 0.5 M NaCl for combined AFP
11. Measured the absorption of each fraction and neutralized to pH 7.0 with 0.4 M Na₂HPO₄
12. Dialysis against PBS and removed insolubled precipitate

Fig. 8. Procedures for the coupling of antibody to the CNBr-activated Sepharose 4B and preparation of AFP by affinity chromatography
Fig. 9-a. Electrophoretic composition of fetal bovine as a function of gestation age
Fig. 9-b. Electrophoretic patterns of fetal, newborn and adult bovine serum
Fig. 10. Immunoelectrophoretic patterns of bovine fetal and adult serum
Fig. 11. Two-dimensional immunoelectrophoresis of bovine fetal serum
Fig. 12. Ammonium sulfate precipitation of AFP in the serum of fetal bovine
Fig. 13. Gel filtration of bovine fetal serum precipitin reaction with anti-bovine AFP immune sera
Fig. 14. Gel filtration of pig amniotic fluid and precipitin reaction with anti-human AFP immune serum.
Fig. 15. Affinity chromatography of bovine fetal serum

Sepharose 4B 1.6x15cm
start buffer: 0.1M, pH 8.4 Borate buffer + 0.5M NaCl
elute buffer: 0.1M, pH 2.4 Glycine HCl buffer + 0.5M NaCl
Fig. 16. Separation of AFP from antigen-antibody precipitate by gel filtration
Fig. 17. Electrophoretic patterns of normal adult serum, fetal serum and purified AFP
Fig. 18. Immunoelectrophoretic patterns of purified AFP and Ouchterlony test of purified AFP
Fig. 19. Ouchterlony test patterns of rabbit and horse antibody to with bovine AFP, pig AFP and human AFP.
Fig. 20. Serum AFP level of fetal bovine as a function of gestation age (mean ± SD)
Fig. 21. The rate of disappearance of AFP in the serum of calves
Fig 22. Amniotic fluid AFP level as a function of gestation age
<table>
<thead>
<tr>
<th>1: AFP 0.19mg/ml</th>
<th>2: AFP 0.10mg/ml</th>
<th>3: AFP 0.05mg/ml</th>
<th>4: AFP 0.03mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>5: BM1029</td>
<td>6: absorbed</td>
<td>7: No. 622 5-5-75</td>
<td>8: absorbed</td>
</tr>
</tbody>
</table>

Fig. 23. Precipitin rings formed by diffusing pure bovine AFP and abnormal adult sera
Fig. 24. Gel filtration of 50% saturated bovine serum with large column
Fig. 25. Re gelfiltration of Sephadex G-200
first peak (Fig. 24.)
Fig. 26. Pattern of zone electrophoresis for the separation of α_2M
Fig. 27. Immunoelectrophoretic patterns of purified α_2M and Ouchterlony test of purified α_2M
Fig. 28. DEAE cellulose chromatography of treated bovine fetal serum with step wise elution
Fig. 29. Gel filtration of bovin Tf (DEAE cellulose chromatography fraction 3)
Fig. 30. Immunoelectrophoretic patterns of purified Tf and Ouchterlony test of purified Tf
Fig. 3: Serum α_2M level of fetal bovine as a function of gestation age (mean ± SD)
Fig. 32. Serum Tf level of fetal bovin as a function of gestation age
<table>
<thead>
<tr>
<th>Age</th>
<th>No. of cases</th>
<th>Total protein (g/dl)</th>
<th>Albumin (g/dl)</th>
<th>Globulins (g/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>α</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>β</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1.5 ± 0.7</td>
<td>0.45 ± 0.18</td>
<td>0.76 ± 0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.16 ± 0.12</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2.4 ± 0.4</td>
<td>0.89 ± 0.13</td>
<td>1.27 ± 0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.19 ± 0.02</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>2.4 ± 0.4</td>
<td>1.09 ± 0.22</td>
<td>1.09 ± 0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.15 ± 0.03</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>3.0 ± 0.7</td>
<td>1.79 ± 0.43</td>
<td>1.00 ± 0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.22 ± 0.07</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>2.6 ± 0.2</td>
<td>1.54 ± 0.07</td>
<td>0.87 ± 0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.15 ± 0.06</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>4.0 ± 0.7</td>
<td>2.74 ± 0.04</td>
<td>0.92 ± 0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30 ± 0.03</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3.4 ± 0.3</td>
<td>2.17 ± 0.22</td>
<td>0.97 ± 0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.26 ± 0.05</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>3.6 ± 0.4</td>
<td>2.22 ± 0.04</td>
<td>1.03 ± 0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.31 ± 0.05</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>4.2 ± 0.6</td>
<td>2.69 ± 0.44</td>
<td>1.10 ± 0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.41 ± 0.13</td>
</tr>
</tbody>
</table>

(mean ± SD)
Table 1-b. Electrophoretic composition of serum protein in bovine fetuses

<table>
<thead>
<tr>
<th>Age Months of gestation</th>
<th>No. of cases</th>
<th>Alubumin (g/dl)</th>
<th>Globulins (g/dl)</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>32.10 ± 2.00</td>
<td>54.90 ± 5.90</td>
<td>9.00 ± 4.20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>37.95 ± 0.25</td>
<td>53.65 ± 0.65</td>
<td>8.20 ± 0.40</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>46.01 ± 5.40</td>
<td>46.66 ± 5.13</td>
<td>6.66 ± 0.91</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>58.80 ± 2.95</td>
<td>33.11 ± 3.19</td>
<td>7.36 ± 1.25</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>60.64 ± 6.61</td>
<td>33.46 ± 4.86</td>
<td>5.70 ± 1.92</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>67.77 ± 4.00</td>
<td>23.50 ± 3.21</td>
<td>7.20 ± 0.70</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>63.76 ± 4.99</td>
<td>28.32 ± 4.74</td>
<td>7.62 ± 0.91</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>61.50 ± 6.00</td>
<td>28.78 ± 5.27</td>
<td>8.53 ± 1.33</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>63.75 ± 1.25</td>
<td>26.50 ± 2.90</td>
<td>9.50 ± 1.60</td>
<td></td>
</tr>
</tbody>
</table>

(mean ± SD)
Table 2. Serum AFP level of fetal bovine as a function of gestation age

<table>
<thead>
<tr>
<th>Age Months of gestation</th>
<th>No. of cases</th>
<th>Sex</th>
<th>AFP (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Days after birth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 3. AFP in the sera of experimental infection with Akabane virus

<table>
<thead>
<tr>
<th>Prot. No.</th>
<th>(inoculation: 6/5*, abortion: 17/6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bovine</td>
<td>620 6/5 13/5 19/5 26/5 2/6</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(inoculation: 14/4, abortion: 27/5)</td>
</tr>
<tr>
<td></td>
<td>622 14/4 21/4 28/4 5/5 12/5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(inoculation: 3/2, abortion: 28/3)</td>
</tr>
<tr>
<td>goat</td>
<td>8 29/1 10/2 17/2 24/2 3/3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* day/month '75
Table 4. Serum α_2M level of fetal bovine as a function of gestation age

<table>
<thead>
<tr>
<th>Age</th>
<th>No. of cases</th>
<th>α_2M (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Months of gestation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.736 \pm 0.119</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1.524 \pm 0.046</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1.154 \pm 0.266</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1.308 \pm 0.258</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1.468 \pm 0.123</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1.692 \pm 0.199</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1.880 \pm 0.350</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>2.686 \pm 0.421</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2.433 \pm 0.769</td>
</tr>
</tbody>
</table>

(mean \pm SD)
Table 5 Serum Tf level of fetal bovine as a function of gestation age

<table>
<thead>
<tr>
<th>Age</th>
<th>No. of cases</th>
<th>Tf (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month of gestation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1.215 ± 0.085</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2.460 ± 0.340</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>2.473 ± 0.486</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2.458 ± 0.268</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2.433 ± 0.248</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>2.423 ± 0.372</td>
</tr>
</tbody>
</table>
Table 6. IgG concentration in the sera of bovine fetuses

<table>
<thead>
<tr>
<th>Prot. No.</th>
<th>Age</th>
<th>IgG (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1017</td>
<td>8</td>
<td>1.18</td>
</tr>
<tr>
<td>1028</td>
<td>5</td>
<td>0.05</td>
</tr>
<tr>
<td>1029</td>
<td>8</td>
<td>0.24</td>
</tr>
<tr>
<td>1032</td>
<td>7</td>
<td>1.35</td>
</tr>
<tr>
<td>1033</td>
<td>2</td>
<td>1.79</td>
</tr>
<tr>
<td>1034</td>
<td>10</td>
<td>1.48</td>
</tr>
</tbody>
</table>
1: bovine IgG 0.1 mg/ml 5: BF1028
2: bovine IgG 0.5 mg/ml 6: BF1029
3: bovine IgG 0.1 mg/ml 7: BF1033 X2
4: bovine IgG 0.05 mg/ml 8: BF1034 X2

Fig. 33. Precipitin ring formed by diffusing pure IgG and bovine fetal sera